European Journal of Wood and Wood Products

, Volume 70, Issue 1–3, pp 209–214 | Cite as

Effect of steaming treatment on resistance to footprints in Turkey oak wood for flooring

  • Luigi TodaroEmail author
Originals Originalarbeiten


Turkey oak (Quercus cerris L.) wood has some technological limitations that reduce its market value despite its great potential. This study evaluated the effect of indirect steaming on the resistance to footprints of Turkey oak wood in order to assess its use as parquet. Steaming treatments were carried out on green wood at 120°C and for 24 hours, while a drying process was carried out on all boards at 63°C, 120 mm Hg of vacuum for 34 days. Good elastic restoration was observed for untreated wood, while for treated wood the resistance to footprints was higher in the radial than in the tangential direction. By contrast, a significant negative effect on the elastic recovery of the original dimensions was found which was higher in radial than in tangential direction, when a load was conducted on steamed wood.


Wood Density Peak Load Tangential Direction Elastic Recovery Treated Wood 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Einfluss des Dämpfens auf den Eindruckwiderstand von türkischem Eichenholz für Fußböden


Das Holz der Zerreiche (Quercus cerris L.) unterliegt einigen technologischen Nachteilen, die seinen Marktwert trotz seines großen Potenzials verringern. Diese Studie untersucht den Einfluss einer indirekten Dampfbehandlung auf den Eindruckwiderstand dieses Holzes im Hinblick auf seine Verwendung als Parkett. Dampfbehandlungen wurden am frischen Holz bei 120°C und über eine Dauer von 24 Stunden durchgeführt. Das daraus hergestellte Schnittholz wurde im Vakuum bei 63°C und 120 mm Hg über einen Zeitraum von 34 Tagen getrocknet. Unbehandeltes Holz wies eine gute elastische Rückfederung auf. Behandeltes Holz wies in radialer Richtung einen höheren Eindruckwiderstand auf als in tangentialer Richtung. Im Gegensatz dazu ergab sich bei gedämpftem Holz in radialer Richtung eine signifikant geringere Rückfederung als in tangentialer Richtung.



Thanks are due to Dr. A. Rita, G. Pizzichillo and M. Marra for the contribution given in the realization of the tests. I am grateful to anonymous reviewers for very helpful suggestions.


  1. Boonstra MJ, Blomberg J (2007) Semi-isostatic densification of heat-treated radiata pine. Wood Sci Technol 41:607–617 CrossRefGoogle Scholar
  2. Burgert I, Bernasconi A, Niklas K, Eckstein D (2001) The influence of rays on the transverse elastic anisotropy in green wood of deciduous trees. Holzforschung 55:449–454 CrossRefGoogle Scholar
  3. Castro G, Zanuttini R (2004) Multilaminar wood: Manufacturing process and main physical-mechanical properties. For Prod J 54(2):61–67 Google Scholar
  4. Cividini R (1967) Study of the characteristics of parquet woods and their evaluation (in Italian). CSP, Istituto Nazionale del legno. CNR Roma VIII, 13, pp 1–42 Google Scholar
  5. Ellis S, Steiner P (2002) The behaviour of five wood species in compression. IAWA J 23:201–211 Google Scholar
  6. EN 1534 (2000) Wood and parquet flooring. Determination of resistance to indentation (Brinell). Test method Google Scholar
  7. Esteves MB, Pereira HM (2009) Wood modification by heat treatment: a review. Bioresour Technol 4(1):370–404 Google Scholar
  8. FEP, European Federation of the Parquet Industry (2009) The European parquet industries in 2008. A challenging year for the European Parquet Sector, pp 1–5 Google Scholar
  9. Giordano G (1994) The wood. Characteristics and main milling (in Italian), vol 2. Consorzio Legno, Reggio Emilia, pp 792 Google Scholar
  10. Gunduz G, Korkut S, Aydemir D, Bekar Í (2009) The density, compression strength and surface hardness of heat treated Hornbeam (Carpinus betulus) wood. Maderas, Cienc Tecnol 11(1):61–70 CrossRefGoogle Scholar
  11. ISO 3350 (1975) Wood. Determination of static hardness Google Scholar
  12. Kocaefe D, Chaudry B, Poncsak S, Bouazara M, Pichette A (2007) Thermogravimetric study of high temperature treatment of aspen: effect of treatment parameters on weight loss and mechanical properties. J Mater Sci 42:854–866 CrossRefGoogle Scholar
  13. Kollmann F, Schneider A (1963) The sorption behaviour of heat-treated wood. Holz Roh- Werkst 21:77–85 CrossRefGoogle Scholar
  14. Korkut S, Bektas I (2008) The effects of heat treatment on physical properties of Uludag fir (Abies bornmuellerinana Mattf) and Scots pine (Pinus sylvestris L) wood. For Prod J 58(3):95–99 Google Scholar
  15. Leitch MA (2009) Hardness values for thermally treated Black ash. Wood Fiber Sci 41(4):440–446 Google Scholar
  16. Marra M, Quartulli S (1996) Resistance to footprints in parquet of Sessile Oak, Doussié, Teak and Balsam wood. Legno Cellul Carta 4:32–38. In Italian with English abstract Google Scholar
  17. Standfest G, Zimmer B (2008) The surface hardness of thermally treated woods. In: Poster presentation, 62nd international convention of forest products society, 22–24 June, St. Louis, USA Google Scholar
  18. Stanzl-Tschegg S, Beikircher W, Loidl D (2009) Comparison of mechanical properties of thermally modified wood at growth ring and cell wall level by means of instrumented indentation tests. Holzforschung 63(4):443–448 CrossRefGoogle Scholar
  19. Sundqvist B (2004) Colour changes and acid formation in wood during heating. Doctoral Thesis, Lulea University of Technology, pp 1–154 Google Scholar
  20. Todaro L, Zuccaro L, Marra M, Basso B, Scopa A (2010) Steaming effects on selected wood properties of turkey oak by spectral analysis. Wood Sci Technol. doi: 10.1007/s00226-010-0377-8 Google Scholar
  21. UNI 3253 (1952) Wood tests. Conditioning Google Scholar
  22. UNI 4712 (1961) Tests on wood. Test of footprints on wood for flooring Google Scholar
  23. UNI ISO 3131 (1985) Wood. Determination of density for physical and mechanical tests Google Scholar
  24. Varga D, van der Zee ME (2008) Influence of steaming on selected wood properties of four hardwood species. Holz Roh- Werkst 66:11–18 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Department of Crop Systems, Forestry and Environmental SciencesUniversity of BasilicataPotenzaItaly

Personalised recommendations