European Journal of Wood and Wood Products

, Volume 70, Issue 1–3, pp 191–197 | Cite as

Fire-retardant properties of wood particleboards treated with boric acid

  • Roger Pedieu
  • Ahmed Koubaa
  • Bernard RiedlEmail author
  • Xia-Ming Wang
  • James Deng
Originals Originalarbeiten


The fire-retardant performance of wood particleboards treated with three percentages (8, 12, and 16%) of boric acid was determined. Particles were treated during wood particles blending with adhesive. Fire-retardant properties were measured according to ASTM D3806 Standard Test Method of Small-Scale Evaluation of Fire-Retardant Paints, (2-Foot Tunnel Method). Particleboards treated with 16% boric acid showed the best fire-retardant properties, particularly in terms of weight loss, flame spread speed and afterflame time. The use of white birch inner bark particles as dispersant also lowered particleboard weight loss during fire testing. The use of boric acid not only decreased the flame spread speed but also greatly improved the internal bond and thickness swelling of manufactured particleboards over controls.


Boric Acid Internal Bond Fire Retardant Wood Particle Thickness Swell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Feuerhemmende Eigenschaften von mit Borsäure imprägnierten Spanplatten


Untersucht wurde das feuerhemmende Verhalten von Spanplatten, die mit 8, 12 und 16 % Borsäure imprägniert wurden. Die Imprägnierung der Späne erfolgte im Rahmen der Klebstoffzugabe. Die feuerhemmenden Eigenschaften wurden gemäß ASTM D3806 im Kleinprüfstand bestimmt (2-Fuß-Tunnelmethode zur Prüfung feuerhemmender Anstriche). Die mit 16 % Borsäure behandelten Spanplatten zeigten die besten feuerhemmenden Eigenschaften, insbesondere hinsichtlich Masseverlust, Flammenausbreitungsgeschwindigkeit und Nachbrennzeit. Die Verwendung von Bastpartikeln der Papierbirke als Dispersionsmittel führte ebenfalls zu einer Reduzierung des Masseverlustes der Spanplatten beim Brandversuch. Die Verwendung von Borsäure hatte nicht nur einen Rückgang der Flammenausbreitungsgeschwindigkeit zur Folge, sondern führte auch zu einer Verbesserung der Querzugfestigkeit und der Dickenquellung der hergestellten Spanplatten im Vergleich zu den Kontrollplatten.



Thanks to the Fonds québécois de la recherche sur la nature et les technologies (FQRNT), chaires de recherche du Canada, FPInnovation-Forintek division, and Université Laval for providing financial support for this research.


  1. ASTM D 1037-99 (2005) Standard test methods for evaluating properties of wood-based fiber and particle panel materials. In: ASTM annual book of standards, vol 04.10. West Conshohocken, PA, pp 140–170 Google Scholar
  2. ASTM D 3806-98 (2001) Standard test method of small-scale evaluation of fire-retardant paints (2-foot tunnel method). In: ASTM annual book of standards, vol 06.01. West Conshohocken, PA, pp 420–424 Google Scholar
  3. Ayrilmis N, Candan Z, White R (2007) Physical mechanical and fire properties of oriented strandboard with fire retardant treated veneers. Holz Roh- Werkst 65:449–458 CrossRefGoogle Scholar
  4. Basson GR, Conradie WE (2001) Preservative and fire-retardant composition and combination and process. United States Patent # 6319431 Google Scholar
  5. Hshieh FY, Beeson HD (1997) Flammability testing of flame-retarded epoxy composites and phenolic composites. Fire Mater 21:41–49 CrossRefGoogle Scholar
  6. Hume J (1992) Assessing the fire performance characteristics of GRP composites. In: International conference on materials and design against fire, London, pp 11–15 Google Scholar
  7. Luneva NK, Petrovskaya LI (2008) Performance of intumescent fire retardant for wood. Russ J Appl Chem 81(4):704–707. ISSN 1070-4272 CrossRefGoogle Scholar
  8. Montgomery DC (1997) Design and analysis of experiments, 4th edn. Arizona State University Google Scholar
  9. Mouritz AP, Gibson AG (2006) Fire properties of polymer composite material. Springer, Berlin, pp 59–101, Chap 3 Google Scholar
  10. Pereyra AM, Giudice CA (2009) Flame-retardant impregnants for woods based on alkaline silicates. Fire Saf J 44:497–503 CrossRefGoogle Scholar
  11. Plotnikova GV, Egorov AN, Khaliullin AK (2003) Flame retardants for wood, based on urea-formaldehyde resin with mineral filler. Russ J Appl Chem 76(2):310–313 CrossRefGoogle Scholar
  12. Rowell RM, LeVan-Green SL (2005) Thermal properties. In: Rowell RM (ed) Handbook of wood chemistry and wood composites, Boca Raton, London, New York, Washington, DC, pp 121–138, Chap 6 Google Scholar
  13. Saka S, Sasaki M, Tanahashi M (1992) Wood-inorganic composites prepared by sol-gel processing. I. Wood-inorganic with porous structure. Mokuzai Gakkaishi 38(11):1043–1049 Google Scholar
  14. Tang Y, Wang DY, Jing XK, Ge XG, Yang B, Wang YZ (2008) A formaldehyde-free flame retardant wood particleboard system based on two-component polyurethane adhesive. J Appl Polym Sci 108:1216–1222 CrossRefGoogle Scholar
  15. Terzi E, Kartal SN, White RN, Shinoda K, Imamura Y (2009) Fire performance and decay resistance of solid wood and plywood treated with quaternary ammonia compounds and common fire retardants. Eur J Wood Prod Google Scholar
  16. Yunchu H, Peijang Z, Songheng Q (2000) TG-DTA studies on wood treated with flame-retardants. Holz Roh- Werkst 58:35–38 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Roger Pedieu
    • 1
  • Ahmed Koubaa
    • 1
    • 2
  • Bernard Riedl
    • 1
    Email author
  • Xia-Ming Wang
    • 3
  • James Deng
    • 3
  1. 1.Centre de recherche sur le boisUniversité LavalQuébecCanada
  2. 2.Chaire de recherche du Canada en valorisation, caractérisation et transformation du boisUniversité du Québec en Abitibi-TémiscamingueRouyn-NorandaCanada
  3. 3.Division ForintekFPInnovationsQuébecCanada

Personalised recommendations