Advertisement

European Journal of Wood and Wood Products

, Volume 69, Issue 4, pp 633–639 | Cite as

Bending properties of compressed wood impregnated with phenolic resin through drilled holes

  • Satoshi Fukuta
  • Atsushi Watanabe
  • Yuichi Akahori
  • Akira Makita
  • Yuji Imamura
  • Yasutoshi Sasaki
Originals Originalarbeiten

Abstract

The effect of drilling on the permeability of Japanese cedar and the bending properties of resin treated compressed wood were examined. Compressed wood was manufactured by impregnating aqueous phenolic resin solutions into the heartwood through drilled holes and polymerizing the impregnated resins using a hot press to maintain the deformation. The compressive deformation was carried out at 150°C for 1 h to one-half of the original specimen thickness. A dye solution permeated the entire specimen when the density of drilled holes exceeded approximately 5000 holes/m2. When the compressed wood was manufactured under the drilling condition, the resin type was found to greatly affect the bending strength and the failure mode of the specimens in bending test.

Keywords

Drilling Japanese Cedar Solution Retention Drilling Condition Resin Solution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Biegeeigenschaften von Pressholz imprägniert mit Phenolharz über gebohrte Löcher

Zusammenfassung

Der Einfluss gebohrter Löcher auf die Permeabilität von japanischer Zeder und die Biegeeigenschaften von mit Harz imprägniertem Pressholz wurden untersucht. Das Pressholz wurde hergestellt, indem wässrige Phenolharzlösungen über gebohrte Löcher in das Kernholz eingebracht und mittels Heißpressung polymerisiert wurden, um die Verformung zu stabilisieren. Das Holz wurde bei 150°C für die Dauer einer Stunde auf die Hälfte der ursprünglichen Prüfkörperdicke gepresst. Mittels einer gefärbten Lösung wurde gezeigt, dass der Prüfkörper ab einer Lochdichte von mindestens 5000 Löchern/m2 vollständig imprägniert war. Bei so hergestelltem Pressholz hatte der Harztyp einen großen Einfluss auf die Biegefestigkeit und das Bruchbild des Prüfkörpers im Biegeversuch.

References

  1. Bryant BS (1966) The chemical modification of wood from the point of view of wood science and economics. For Prod J 16(2):20–27 Google Scholar
  2. Fukuta S, Takasu Y, Sasaki Y, Hirashima Y (2007) Compressive deformation process of Japanese cedar (Cryptomeria Japonica). Wood Fiber Sci 39(4):548–555 Google Scholar
  3. Fukuta S, Asada F, Sasaki Y (2008a) Manufacture of compressed wood fixed by phenolic resin impregnation through drilled holes. J Wood Sci 54(2):100–106 CrossRefGoogle Scholar
  4. Fukuta S, Asada F, Sasaki Y (2008b) The simultaneous treatment of compression drying and deformation fixation in the compression processing of wood. For Prod J 58(7/8):82–88 Google Scholar
  5. Fukuta S, Asada F, Sasaki Y (2008c) Influence of drilled holes on bending properties of compressed wood manufactured by new process. For Prod J 58(10):19–24 Google Scholar
  6. Furuno T, Imamura Y, Kajita H (2004) The modification of wood by treatment with low molecular weight phenol-formaldehyde resin: a properties enhancement with neutralized phenolic-resin and resin penetration into wood cell walls. Wood Sci Technol 37(5):349–361 CrossRefGoogle Scholar
  7. Higuchi M (2006) Impregnation of wood with phenolic resin. Suppression of physical deterioration protects wood from termite-attack and decay. Wood Ind 61(6):238–243 Google Scholar
  8. Inoue M, Norimoto M, Otsuka Y, Yamada T (1991a) Surface compression of coniferous wood lumber II. Permanent set of compression wood by low molecular weight phenolic resin and some physical properties of the products. Mokuzai Gakkaishi 37(3):227–233 Google Scholar
  9. Inoue M, Norimoto M, Otsuka Y, Yamada T (1991b) Surface compression of coniferous wood lumber III. Permanent set of the surface compressed layer by a water solution of low molecular weight phenolic resin. Mokuzai Gakkaishi 37(3):234–240 Google Scholar
  10. Inoue M, Norimoto M, Tanahashi M, Rowel RM (1993a) Steam or heat fixation of compressed wood. Wood Fiber Sci 25(3):224–235 Google Scholar
  11. Inoue M, Ogata S, Kawai S, Rowell RM, Norimoto M (1993b) Fixation of compressed wood using melamine-formaldehyde resin. Wood Fiber Sci 25(4):404–410 Google Scholar
  12. Inoue M, Minato K, Norimoto M (1994) Permanent fixation of compressive deformation of wood by crosslinking. Mokuzai Gakkaishi 40(9):931–936 Google Scholar
  13. Itoh T, Ishihara S (1997) Compressive deformation of wood using hot rollpress and its fixation by glyoxal resin. Mokuzai Gakkaishi 43(1):52–60 Google Scholar
  14. Kubota M, Umehara K, Kikuchi S, Hirabayashi Y (1998) Manufacture of phenolic resin impregnated compressed wood by use of high-pressure steamed Japanese larch lumber and properties of the products. J Hokkaido For Prod Res Inst 12(3):1–9 Google Scholar
  15. Ott LR, Longnecker MT (2000) An introduction to statistical methods and data analysis. Duxbury, Pacific Grove, pp 427–468, 943–974 Google Scholar
  16. Ryu JY, Takahashi M, Imamura Y, Sato T (1991) Biological resistance of phenol-resin treated wood. Mokuzai Gakkaishi 37(9):852–858 Google Scholar
  17. Ryu JY, Imamura Y, Takahashi M, Kajita H (1993) Effect of molecular weight and some other properties of resins on the biological resistance of phenol-resin treated wood. Mokuzai Gakkaishi 39(4):486–492 Google Scholar
  18. Shoho S (2007) Development of highly durable exterior wooden materials from domestic timber species by impregnation of phenol resin. Wood Preserv 33(3):126–131 Google Scholar
  19. Stamm AJ, Seborg RM (1951) Resin-treated laminated, compressed wood-Compreg. Rep No 1381. USDA, Forest Service, Forest Products Laboratory, Madison, WI Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Satoshi Fukuta
    • 1
  • Atsushi Watanabe
    • 2
  • Yuichi Akahori
    • 3
  • Akira Makita
    • 3
  • Yuji Imamura
    • 4
  • Yasutoshi Sasaki
    • 2
  1. 1.Aichi Industrial Technology InstituteAichiJapan
  2. 2.Graduate School of Bioagricultural ScienceNagoya UniversityNagoya-cityJapan
  3. 3.Dainihon Wood-Preserving Co., Ltd.Nagoya-cityJapan
  4. 4.Research Institute for Sustainable HumanosphereKyoto UniversityUji-cityJapan

Personalised recommendations