European Journal of Wood and Wood Products

, Volume 69, Issue 4, pp 511–519

Tailor made OSB for special application

  • Costel Barbuta
  • Alain Cloutier
  • Pierre Blanchet
  • Vikram Yadama
  • Eini Lowell
Originals Originalarbeiten

Abstract

The purpose of this study was to develop speciality oriented strand board (OSB) with high stiffness for use in products such as engineered wood flooring (EWF). Three-layer oriented strand boards were manufactured from two feedstocks of strands: a mixture of 90% aspen (Populus tremuloides) and 10% of paper birch (Betula papyrifera), and 100% of small diameter ponderosa pine logs (Pinus ponderosa). The OSB panels were manufactured under a factorial design of three resin contents, two density profiles, and three weight ratios for the face and core layers. Tests to determine density, bending modulus of elasticity (MOE), internal bond (IB) and thickness swelling (TS) were performed according to ASTM standard D 1037-06a. The results showed that the higher values of bending MOE for panels made from aspen/birch mixture and ponderosa pine, 8190 and 9050 MPa, respectively, were obtained for the same combination of factors. Such high bending MOE values are very close to Baltic birch (Betula pendula) plywood, a product known for its high stiffness. The effect of resin content on IB is more pronounced for panels made from ponderosa pine than panels made from the aspen/birch mixture. Thickness swelling of panels made from ponderosa pine strands is higher than thickness swelling of panels made from a mixture of aspen and birch strands. The results indicate the potential to tailor an OSB for a specific application such as EWF.

Maßgefertigte OSB-Platten für Spezialanwendungen

Zusammenfassung

Ziel dieser Studie war es, spezielle OSB-Platten mit hoher Steifigkeit zu entwickeln, die für Produkte wie zum Beispiel Doppelböden (EWF) verwendet werden können. Dreischichtige OSB-Platten wurden aus zwei verschiedenen Strands hergestellt: einer Mischung aus 90% Espe (Populus tremuloides) und 10% Papierbirke (Betula papyrifera) sowie aus 100% Kiefernschwachholz (Pinus ponderosa). Die OSB-Platten wurden nach einem Faktorenversuchsplan bestehend aus drei Harzgehalten, zwei Dichteprofilen und drei Masseverhältnissen der Deck- und Mittelschichten hergestellt. Die Dichte, der Biege-Elastizitätsmodul (MOE), die Querzugfestigkeit (IB) und die Dickenquellung (TS) wurden gemäß ASTM D 1037-06a bestimmt. Die Ergebnisse zeigten, dass sich die höheren E-Moduln bei Platten sowohl aus einer Espe/Birken-Mischung (8190 MPa) als auch aus Kiefernschwachholz (9050 MPa) bei den gleichen Faktorenkombinationen ergaben. Diese hohen Biege-E-Modul-Werte erreichen nahezu die Werte für Birkensperrholz (Betula pendula), einem Produkt, das für seine hohe Festigkeit bekannt ist. Der Einfluss des Harzgehalts auf die Querzugfestigkeit ist bei Platten aus Kiefernschwachholz stärker ausgeprägt als bei Platten aus Espe/Birken-Mischung. Platten aus Kiefernschwachholz haben eine höhere Dickenquellung als Platten aus Espe/Birke. Diese Ergebnisse belegen das Potential, um maßgeschneiderte OSB-Platten für spezielle Anwendungen wie zum Beispiel Doppelböden herzustellen.

References

  1. Alexopoulos JA, Shields JA (1982) Structural performance of waferboard made from alternate wood suplies; mixed hardwoods. In: Proceedings of the 1982 Canadian waferboard symposium Google Scholar
  2. American Society for Testing and Materials (2006) Standard methods of evaluating the properties of wood-based fiber and particle panel materials. ASTM D 1037-06a. ASTM, Philadelphia, pp 120–149 Google Scholar
  3. Anonymous (2002) Handbook of Finnish plywood. Finnish Plywood Forest Industries Federation, Lahti, pp 67 Google Scholar
  4. Au KC, Gertjejansen RO (1989) Influence of wafer thickness and resin spread on the properties of paper birch waferboard. For Prod J 39(4):47–50 Google Scholar
  5. Barnes D (2001) A model of the effect of strand length and strand thickness on the strength properties of oriented wood composites. For Prod J 51(2):36–46 Google Scholar
  6. Brunette G (1991) Properties of waferboard/OSB manufactured from alternate and/or mixed species; a literature review. Ottawa, ON, Canadian Forest Service and Forintek Canada Corp. Project No. 03-38-15-M-3443, pp 25 Google Scholar
  7. Canadian Standard Association (CSA) (1994) Test methods for OSB and waferboard CSA 0437 Series-93, pp 85 Google Scholar
  8. Chapman K (2006) Wood-based panels: particleboard, fibreboards and oriented strand board. In: Primary wood processing. Springer, Amsterdam, pp 427–475 CrossRefGoogle Scholar
  9. Chen S, Fang L, Liu X, Wellwood R (2008) Effect of mat structure on modulus of elasticity of oriented strandboard. Wood Sci Technol 42(3):197–210 CrossRefGoogle Scholar
  10. Cloutier A, Ananias RA, Ballerini A, Pecho R (2007) Effect of radiata pine juvenile wood on the physical and mechanical properties of oriented strandboard. Holz Roh-Werkst 65:157–162 CrossRefGoogle Scholar
  11. Generalla NC, Biblis EJ, Carino HF (1989) Effect of two resin levels on the properties of commercial souther OSB. For Prod J 39(6):64–68 Google Scholar
  12. Gu H, Wang S, Neisuwan T, Wang S (2005) Comparison study of thickness swell performance of commercial oriented strandboard flooring products. For Prod J 55(12):239–245 Google Scholar
  13. Haygreen JB, Bowyer JL (1996) Forest products and wood science—an introduction. Iowa State University Press, Ames, pp 484 Google Scholar
  14. Hse CY (1987) Bonding dense hardwoods for structural products. In: Proceedings of FPRS. Conference structural wood composites: new technologies for expanding markets. Memphis, TN, USA Google Scholar
  15. Kelly MW (1977) Critical literature review of relationships between processing parameters and physical properties of particleboard. USDA Forest Serv., For Prod Lab, Research Note FPL-10, pp 65 Google Scholar
  16. Maloney TM (1975) Use of short-retention-time blenders with large-flake furnishes. For Prod J 25(5):21–29 Google Scholar
  17. Maloney TM (1993) Modern particleboard and dry process fiberboard manufacturing. Miller Freeman, Inc, San Francisco, pp 681 Google Scholar
  18. Merry J (2008) Production outlook: structural wood panels and engineered wood products. APA—The Engineered Wood Association, Release: C5-08 Google Scholar
  19. Nelson S (1997) Structural composite lumber. In: Engineered wood products; a guide for specifies, designers and users. PFS Research Foundation, Madison, pp 6-147 to 6-172 Google Scholar
  20. USDA Forest Service (USDA) (1999) Wood handbook: wood as an engineering material. Gen Tech Rep FPL-GTR-113. US Department of Agriculture, pp 1-4 and 3-19 Google Scholar
  21. Wang XM, Wan H (2001) Study of adhesive requirement for OSB from high density hardwood. Québec, Forintek Canada Corp. Project No. 1623, pp 147 Google Scholar
  22. Weight S, Yadama V (2008) Manufacture of laminated strand veneer (LSV) composite. Part 1: Optimization and characterization of thin strand veneers. Holzforschung 62(6):718–724 CrossRefGoogle Scholar
  23. Wong ED, Zhang M, Wang Q, Kawai S (1998) Effects of mat moisture content and press closing speed on the formation of density profile and properties of particleboard. J Wood Sci 44:287–295 CrossRefGoogle Scholar
  24. Xing C, Zhang SY, Deng J, Wang S (2007) Investigation of the effect of bark fiber as core material and its resin content on three-layer MDF performance by response surface methodology. Wood Sci Technol 41(7):585–595 CrossRefGoogle Scholar
  25. Yemele MCN, Blanchet P, Cloutier A, Koubba A (2008) Effect of bark content and particle geometry on the physical and mechanical properties of particleboard made from black spruce and trembling aspen bark. For Prod J 58(11):48–56 Google Scholar
  26. Youngquist JA (1999) Wood-based composites and panel products. Wood handbook wood as an engineering material. For Prod Lab, Madison Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Costel Barbuta
    • 1
  • Alain Cloutier
    • 1
  • Pierre Blanchet
    • 2
  • Vikram Yadama
    • 3
  • Eini Lowell
    • 4
  1. 1.Sciences du bois et de la forêtUniversité LavalQuébecCanada
  2. 2.Value-added Wood ProductsFPInnovationsQuébecCanada
  3. 3.Wood Materials and Engineering LaboratoryWashington State UniversityPullmanUSA
  4. 4.USDA Forest ServicePacific Northwest Research StationPortlandUSA

Personalised recommendations