Advertisement

Ring width, latewood proportion and dry density in stems of Pinus brutia Ten.

  • Stergios Adamopoulos
  • Elias Milios
  • Dimitris Doganos
  • Ioannis Bistinas
Originals Originalarbeiten
  • 115 Downloads

Abstract

This study examined basic characteristics of stem wood produced in Pinus brutia Ten. reforestations in Northeastern Greece. Sixteen dominant trees growing at good and medium site qualities were felled at 14–22 years. Site quality classification was based on site quality surrogates and confirmed by using site index curves that were created for a neighbouring area. Discs were taken at three stem positions (base, middle, top) to study variations in ring width, latewood proportion and dry density. Generally, at both good and medium sites, ring width was found to increase towards the top of the stems while latewood proportion and dry density showed a negative relationship with stem height. Radial variability trends were similar at all heights, and at both sites, revealing a rapid increase for ring width in the first 3–6 annual rings followed by a decrease towards the bark, a gradual increase for latewood proportion and no specific change for dry density. Comparisons between wood material produced during the same growth period (2005–2001) showed statistically significant differences among sampling heights in all cases except for dry density in medium sites. At the base of the stems, mean ring width and dry density were significantly (P ≤0.05) higher at good sites (3.6 mm and 0.53 g/cm3) than at medium sites (3.0 mm and 0.50 g/cm3). However, the differences between the sites are of small magnitude and therefore have limited practical impact on wood processing. The availability of such data is useful in utilising small-dimension timber of brutia pine.

Keywords

Wood Density Ring Width Annual Ring Site Quality Compression Wood 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Jahrringbreite, Spätholzanteil und Darrrohdichte in Pinus brutia Ten. Stammholz

Zusammenfassung

In dieser Studie wurden die Eigenschaften von Pinus brutia Ten. Stammholz aus Wiederaufforstungsgebieten in Nordost-Griechenland untersucht. Sechzehn herrschende, 14 bis 22 Jahre alte Bäume aus guten bis mittelguten Standorten wurden gefällt. Die Standortgüte wurde auf Basis der Bodenqualität klassifiziert und durch Wachstumskurven eines benachbarten Gebietes bestätigt. Die Variation der Jahrringbreite, des Spätholzanteiles und der Rohdichte wurde an Stammscheiben aus dem unteren, mittleren und oberen Stammabschnitt untersucht. Dabei hat sich gezeigt, dass generell sowohl an guten als auch mittelguten Standorten die Jahrringbreite mit zunehmender Stammhöhe zunahm, wohingegen der Spätholzanteil sowie die Rohdichte mit der Stammhöhe negativ korreliert waren. In radialer Richtung variierten die Eigenschaften in allen Stammhöhen und auf beiden Standorten vergleichbar: die Jahrringbreite in den ersten 3–6 Jahrringen nahm stark zu und nahm dann ab. Der Spätholzanteil nahm leicht zu und die Rohdichte zeigte keine besonderen Veränderungen. Das im gleichen Zeitraum gebildete Holz (2005–2001) unterschied sich in den verschiedenen Entnahmehöhen statistisch signifikant mit Ausnahme der Rohdichte in den mittelguten Standorten. Die mittlere Jahrringbreite und Rohdichte am unteren Stammabschnitt waren an guten Standorten signifikant höher (3.6 mm und 0.53 g/cm3) als an mittelguten Standorten (3.0 mm und 0.5 g/cm3). Allerdings sind die Unterschiede zwischen den Standorten gering und haben daher einen begrenzten Einfluss auf die Holzverwendung. Die vorhandenen Daten sind hilfreich für die Erzeugung von Schnittholz mit kleinen Abmessungen aus Brutiakiefer.

References

  1. 1.
    Barnes BV, Zak DR, Denton SR, Spurr SH (1998) Forest Ecology, 4th edn. Wiley, New YorkGoogle Scholar
  2. 2.
    Browicz K (1994) Chorology of trees and shrubs in south-west Asia and adjacent regions, Vol 10. Polish Academy of Sciences, PoznañGoogle Scholar
  3. 3.
    Carmean WH (1972) Site index curves for upland oaks in the central states. Forest Sci 18(1):109–120Google Scholar
  4. 4.
    Critchfield WB, Little EL (1966) Geographic distribution of the pines of the world. USDA Forest Service, Miscellaneous Publication 991Google Scholar
  5. 5.
    Dafis SA (1986) Forest ecology. Giahoudi-Giapouli Publishers, Thessaloniki, p 443 (in Greek)Google Scholar
  6. 6.
    Dafis SA (1987) Ecology of Pinus halepensis and P. brutia forests. In: Proceedings of the 1st Scientific Conference on Pinus halepensis and Pinus brutia forests, Chalkis, 30 September–2 October 1987. Hellenic Forestry Society, Thessaloniki, pp 17–25Google Scholar
  7. 7.
    Frankis MP (1999) Pinus brutia. Curtis Bot Mag 16:173–184Google Scholar
  8. 8.
    Gezer A (1986) The silviculture of Pinus brutia in Turkey. CIHEAM 86(1):55–66Google Scholar
  9. 9.
    Hatzistathis A, Goudelis G, Zagas TH (1995) Growth and yield of Pinus brutia reforestations in relation with soil and physiographic factors. Scient Annals Dep For Man Nat Environ, Vol 38. Aristotelion University, Thessaloniki, GreeceGoogle Scholar
  10. 10.
    Hildebrandt G (1960) The effect of growth conditions on the structure and properties of wood. In: Proceedings of the Fifth World Forestry Congress, Seattle, Wash, Vol 3, pp 1348–1353Google Scholar
  11. 11.
    Hilmi HA (1960) Density variation in Pinus brutia. Extr Rep Imp For Inst Oxford, EnglandGoogle Scholar
  12. 12.
    Larson PR (1957) Effect of environment on the percentage of summerwood and specific gravity of Slash pine. Yale University, School of Forestry, Bulletin No 63Google Scholar
  13. 13.
    Lindström H (1997) Fiber length, tracheid diameter, and latewood percentage in Norway spruce: Development from pith outwards. Wood Fiber Sci 29:21–34Google Scholar
  14. 14.
    Milios E (2004) The influence of stand development process on the height and volume growth of dominant Fagus sylvatica L. s.l. trees in the central Rhodope Mountains of north-eastern Greece. Forestry 77(1):17–26Google Scholar
  15. 15.
    Newberry JD (1991) A note on Carmean’s estimate of height from stem analysis data. Forest Sci 37(1):368–369Google Scholar
  16. 16.
    Oliver CD, Larson BC (1996) Forest stand dynamics (update edition). Wiley, New York, p 520Google Scholar
  17. 17.
    Panshin AJ, de Zeeuw C (1980) Textbook of wood technology. McGraw-Hill, New York, p 722Google Scholar
  18. 18.
    Pantelas V (1986) The forests of brutia pine in Cyprus. CIHEAM 86(1):43–46Google Scholar
  19. 19.
    Paraskevopoulou A (1987) Comparison of wood characteristics of aleppo and brutia pine from reforestations with exotic softwoods. In: Proceedings of the 1st Scientific Conference on Pinus halepensis and Pinus brutia forests, Chalkis, 30 September–2 October 1987. Hellenic Forestry Society, Thessaloniki, pp 362–388Google Scholar
  20. 20.
    Raiskila S, Saranpää P, Fagerstedt K, Laakso T, Löija M, Mahlberg R, Paajanen L, Ritschkoff AC (2006) Growth rate and wood properties of Norway spruce cutting clones on different sites. Silva Fenn 40(4):247–256Google Scholar
  21. 21.
    Raymond CA, Dickson R, Rowell D, Blakemore P, Clark N, Williams M, Freischmidt G, Joe B (2004) Wood and fibre properties of dryland conifers. RIRDC Publication No. 04/099, Kingston ACTGoogle Scholar
  22. 22.
    Rinn F (2003) TSAP-Win User Reference Manual. Rinntech, HeidelbergGoogle Scholar
  23. 23.
    Roussodimos GC, Petinarakis JH (1994) The wood of hard pine (Pinus brutia Ten.). Scient Annals Dep For Man Nat Environ, Vol 37. Aristotelion University, Thessaloniki, GreeceGoogle Scholar
  24. 24.
    Saranpää P (2003) Wood density and growth. In: Barnett JR, Jeronimidis G (eds) Wood quality and its biological basis. Biological Sciences Series. Blackwell & CRC Press, London & Boca Raton, FL., pp 87–117Google Scholar
  25. 25.
    Smith DM, Larson BC, Kelty MJ, Mark P, Ashton S (1997) The practice of silviculture: applied forest ecology. Wiley, New York, p 537Google Scholar
  26. 26.
    Tsoumis G (1991) Science and technology of wood: structure, properties, utilization. Van Nostrand Reinhold, New YorkGoogle Scholar
  27. 27.
    Tsoumis G, Panagiotidis N (1980) Effect of growth conditions on wood quality characteristics of black pine (Pinus nigra Arn.). Wood Sci Technol 14:301–310Google Scholar
  28. 28.
    Zobel B, van Buijtenen J (1989) Wood variation: its causes and control. Springer Series in Wood Science. Springer, New YorkGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Stergios Adamopoulos
    • 1
  • Elias Milios
    • 2
  • Dimitris Doganos
    • 2
  • Ioannis Bistinas
    • 2
  1. 1.Department of Forestry and Management of Natural EnvironmentTechnological Educational Institute of LarissaKarditsaGreece
  2. 2.Department of Forestry and Management of the Environment and Natural ResourcesDemocritus University of ThraceNea OrestiadaGreece

Personalised recommendations