Holz als Roh- und Werkstoff

, Volume 65, Issue 5, pp 353–358 | Cite as

A comparative study on brown-rot fungus decay and subterranean termite resistance of thermally-modified and ACQ-C-treated wood

  • Jun Li Shi
  • Duygu Kocaefe
  • Terry Amburgey
  • Jilei Zhang
Originalarbeiten Originals


The resistance of thermally-modified and Alkaline Copper Quaternary type C (ACQ-C) treated aspen (Populus tremuloides Michx), jack pine (Pinus banksiana Lamb.), yellow-poplar (Liriodendron tulipifera L.), and Scots pine (Pinus sylvestris L.) against the brown-rot fungus (Gloeophyllum trabeum) and Eastern U.S. subterranean termite (Reticulitermes flavipes) was studied. Wood materials were thermally-modified at a temperature of 210 °C for 15 min. ACQ-C was impregnated into yellow-poplar and jack pine wood at three different retention levels and at each level both leaching and non-leaching procedures were conducted. Results indicate that ACQ-C-treated yellow-poplar and jack pine became significantly more resistant to the brown-rot fungus compared to the thermally-modified wood and the untreated control. Thermally-modified yellow-poplar and jack pine were more resistant to this fungus than untreated wood. For aspen and Scots pine, the resistance to G. trabeum was improved after the thermal modification, but it remained susceptible to this brown-rot fungus decay. Termite susceptibility of thermally-modified aspen, jack pine, and yellow-poplar was comparable to that of untreated controls. Significantly greater termite attack occurred on thermally-modified Scots pine wood than it did on untreated wood. This likely is attributed to some compounds contained in Scots pine wood that inhibited termite attack.


Untreated Wood Average Weight Loss Chromated Copper Arsenate Retention Level Subterranean Termite 

Vergleichende Untersuchung des Braunfäulebefalls und der Bodentermitenresistenz von wärmebehandeltem und mit ACQ-C behandeltem Holz


Die Resistenz von wärmebehandelter sowie mit ACQ-C (Alkalisch-Kupfer-Quaternäre- Verbindung) behandelter Aspe (Populus tremuloides Michx), Jack Pine (Pinus banksiana Lamb.), Gelbpappel (Liriodendron tulipifera L.) und Kiefer (Pinus sylvestris L.) gegen den Braunfäulepilz Gloeophyllum trabeum und gegen die ostamerikanische Bodentermite Reticulitermes flavipes wurde untersucht. Die Holzproben wurden bei einer Temperatur von 210 °C über eine Dauer von 15 min wärmebehandelt. Gelbpappel- und Jack Pine Proben wurden mit jeweils 3 unterschiedlichen Einbringmengen von ACQ-C imprägniert und dann sowohl ausgewaschen als auch nicht ausgewaschen geprüft. Die Ergebnisse zeigen, dass das mit ACQ-C behandelte Holz der Gelbpappel und Jack Pine im Vergleich zu wärmebehandeltem und unbehandeltem Holz gegen den Braunfäulepilz deutlich resistenter war. Wärmebehandelte Gelbpappel und Jack Pine waren gegen diesen Braunfäulepilz resistenter als unbehandeltes Holz. Die Resistenz von Aspe und Kiefer gegen den Braunfäulepilz war nach Wärmebehandlung zwar verbessert, jedoch waren diese Holzarten auch weiterhin für diese Pilzart anfällig. Die Termitenanfälligkeit von wärmebehandelter Aspe, Jack Pine und Gelbpappel war gegenüber unbehandelten Kontrollproben nicht erkennbar verbessert. Bei wärmebehandeltem Kiefernholz war ein signifikant höherer Termitenbefall als bei unbehandeltem Holz zu verzeichnen. Grund dafür könnte sein, dass in unbehandeltem Kiefernholz einige den Termitenbefall hemmende Verbindungen vorhanden sind.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alén R, Kotilainen R, Zaman A (2002) Thermochemical behavior of Norway spruce (Picea abies) at 180–225 °C. Wood Sci Technol 36:163–171CrossRefGoogle Scholar
  2. 2.
    American Wood-Preservers’ Association (AWPA) (2005a) AWPA Standard E1-97 Standard method for laboratory evaluation to determine resistance to subterranean termites. American Wood-Preservers’ Association, Selma, Alabama, USAGoogle Scholar
  3. 3.
    American Wood-Preservers’ Association (AWPA) (2005b) AWPA Standard E10-01 Standard method of testing wood preservatives by laboratory soil-block cultures. American Wood-Preservers’ Association, Selma, Alabama, USAGoogle Scholar
  4. 4.
    Bengtsson C, Jermer J, Brem F (2002) Bending strength of heat-treated spruce and pine timber. Document No. IRG/WP 02-40242. International Research Group on Wood Protection, Stockholm, SwedenGoogle Scholar
  5. 5.
    Boonstra MJ, Tjeerdsma B (2006) Chemical analysis of heat treated softwoods. Holz Roh- Werkst 64(3):204–211CrossRefGoogle Scholar
  6. 6.
    Chanrion P, Schreiber J (2002) Bois Traité par Haute Température. CTBA, FranceGoogle Scholar
  7. 7.
    Dirol D, Guyonnet R (1993) The improvement of wood durability by retification process. Document No. IRG/WP 98-40015. International Research Group on Wood Protection, Stockholm, SwedenGoogle Scholar
  8. 8.
    Feist WC, Sell J (1987) Weathering behaviour of dimensional stabilized wood treated by heating under pressure nitrogen gas. Wood Fiber Sci 19(2):183–195Google Scholar
  9. 9.
    Green F, Highley T (1997) Mechanism of brown-rot decay: Paradox or paradigm. Int Biodeter Biodegr 39:113–124CrossRefGoogle Scholar
  10. 10.
    Hillis WE, Rozsa AN (1985) High temperature and chemical effects on wood stability. Wood Sci Technol 19:57–66CrossRefGoogle Scholar
  11. 11.
    Jämsä S, Viitaniemi P (2001) Heat treatment of wood-better durability without chemicals. Proceedings of Special Seminar “Review on heat treatments of wood”, Antibes, FranceGoogle Scholar
  12. 12.
    Kartal SN, Ayrilmis N (2005) Blockboard with boron-treated veneers: laboratory decay and termite resistance tests. Int Biodeter Biodegr 55(2):93–98CrossRefGoogle Scholar
  13. 13.
    Militz H (2002) Thermal treatment of wood: European processes and their background. Document No. IRG/WP 02-40241. International Research Group on Wood Protection, Stockholm, SwedenGoogle Scholar
  14. 14.
    Mitchell PH (1988) Irreversible property changes of small loblolly pine specimens heated in air, nitrogen, or Oxygen. Wood Fiber Sci 20(3):320–355Google Scholar
  15. 15.
    Murmamis L, Highley TL, Palmer JG (1987) Cytochemical localisation of cellulases in decayed and nondecayed wood. Wood Sci Technol 21:101–109CrossRefGoogle Scholar
  16. 16.
    Santos JA (2000) Mechanical behaviour of Eucalyptus wood modified by heat. Wood Sci Technol 34:39–43CrossRefGoogle Scholar
  17. 17.
    SAS Institute Inc. (1990) SAS/STAT User’s guide. Cary, N.CGoogle Scholar
  18. 18.
    Stamm AJ, Hansen LA (1937) Minimizing wood shrinkage and swelling. Effect of heating in various gases. Ind Eng Chem 29:831–833CrossRefGoogle Scholar
  19. 19.
    Stamm AJ, Burr HK, Kline AA (1946) Staybwood…Heat-Stabilized wood. Ind Eng Chem 38:630–634CrossRefGoogle Scholar
  20. 20.
    Tjeerdsma BF, Boonstra M, Pizzi A, Tekely P, Militz H (1998) Characterisation of thermally modified wood: molecular reasons for wood performance improvement. Holz Roh- Werkst 56(3):149–153CrossRefGoogle Scholar
  21. 21.
    Tjeerdsma BF, Militz H (2005) Chemical changes in hydrothermal treated wood: FTIR analysis of combined hydrothermal and dry heat-treated wood. Holz Roh- Werkst 63:102–111CrossRefGoogle Scholar
  22. 22.
    Tjeerdsma BF, Stevens M, Militz H (2000) Durability aspects of (hydro)thermal treated wood. Document No. IRG/WP 00-40160. International Research Group on Wood Protection, Stockholm, SwedenGoogle Scholar
  23. 23.
    Vernois M (2001) Heat treatment of wood in France-state of the art. Proceedings of Special Seminar “Review on heat treatments of wood”, Antibes, FranceGoogle Scholar
  24. 24.
    Yildiz S, Çolakoğlu G, Yildiz ÜC, Gezer ED, Temiz A (2002) Effects of heat treatment on modulus of elasticity of beech wood. Document No. IRG/WP 02-40222. International Research Group on Wood Protection, Stockholm, SwedenGoogle Scholar
  25. 25.
    Zabel RA, Morrell JJ (1992) Woods Microbiology – Decay and Its Prevention. Academic Press, New York, NY, USAGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Jun Li Shi
    • 1
  • Duygu Kocaefe
    • 2
  • Terry Amburgey
    • 1
  • Jilei Zhang
    • 1
  1. 1.Department of Forest ProductsMississippi State UniversityStarkvilleUSA
  2. 2.Department of Applied ScienceUniversity of Québec at ChicoutimiChicoutimiCanada

Personalised recommendations