Skip to main content
Log in

Influence of granule properties and concentration on cork-cement compatibility

Einfluss der Eigenschaften und des Anteils von Korkgranulat auf die Kork-Zement-Kompatibilität

  • ORIGINALARBEITEN ORIGINALS
  • Published:
Holz als Roh- und Werkstoff Aims and scope Submit manuscript

Abstract

Cork granules are produced as by-products and waste by the cork processing industries that make ‘bottle stoppers’ as a main product. These granules are of low density and could be used as lightweight aggregates for making concrete. This paper describes an investigation carried out to assess the compatibility of cork granules with cement for the manufacture of lightweight cementitious composites. Five different grades of cork granules varying in terms of size and density were investigated. The effects of extractives, particle size and density of the cork granules were studied. The results indicate that these parameters affect cement hydration in a complex way. At lower concentrations of cork (10%), only the extractives have an influence on hydration behaviour. At higher cork concentrations (20% and 30%), however, particle size and density also affect the compatibility. Nevertheless, cork granules are found to be compatible with cement.

Zusammenfassung

Korkgranulat entsteht in der korkverarbeitenden Industrie als Neben- und Abfallprodukt bei der Herstellung von Flaschenkorken. Korkgranulat hat eine geringe Dichte und könnte als Leichtzuschlagstoff für die Herstellung von Beton verwendet werden. In diesem Artikel werden die Ergebnisse einer Untersuchung zur Beurteilung der Kompatibilität von Korkgranulat und Zement zur Herstellung von zementgebundenen Verbundwerkstoffen vorgestellt. Unter Verwendung von fünf Korkgranulatarten unterschiedlicher Grösse und Dichte wurde die Wirkung von Extraktstoffen, der Partikelgrösse und der Dichte untersucht. Es zeigte sich, dass sich diese Parameter in komplexer Weise auf die Zementhydration auswirken. Bei geringem Korkanteil (10%) wirken sich nur die Extraktstoffe auf das Hydrationsverhalten aus. Bei höheren Korkanteilen (20 und 30%) beeinflussen jedoch auch die Partikelgrösse und die Dichte die Kompatibilität. Insgesamt gesehen erwies sich Korkgranulat als mit Zement kompatibel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aggarwal LK, Singh J (1990) Effect of plant fibre extractives on properties of cement. Cement Concrete Compos 12:103–108

    Article  CAS  Google Scholar 

  2. Ahn WY, Moslemi AA (1980) SEM examination of wood-Portland cement bonds. J Wood Sci 13(2):77–82

    CAS  Google Scholar 

  3. Aziz MA, Murphy CK, Ramaswamy SD (1979) Lightweight concrete using cork granules. Int J Cement Compos Lightweight Concrete 1:29–33

    Article  Google Scholar 

  4. Cordeiro N, Belgacem MN, Gandini A, Pascoal Neto C (1999) Urethanes and polyurethanes from suberin 2: synthesis and characterisation. Ind Crop Prod 10:1–10

    Article  CAS  Google Scholar 

  5. Corticeira Amorim-Industria SA (2002) Cork in the construction industry. Engineers Today (available at: http://www.ingenieure-heute.de/e0101.pdf accessed on 14.03.2002)

  6. Demirbas A, Aslan A (1998) Effects of ground hazelnut shell, wood and tea waste on the mechanical properties of cement. Cement Concrete Res 28(8):1101–1104

    Article  CAS  Google Scholar 

  7. Ferrigno TH (1987) Principles of filler selection and use. In: Katz HS, Mileswki JV (eds) Handbook of Fillers for Plastic. Van Nostrand Reinhold, New York, pp 8–61

    Google Scholar 

  8. Freiesleben Hansen F, Pedersen J (1977) Maturity computer for controlled curing and hardening of concrete. Nordisk Betong 1:19–34

    Google Scholar 

  9. Gibson LJ, Ashby MF (1999) Cellular solids: structure and properties, 2nd ed. (Paperback). Cambridge University Press, Cambridge, pp 453–467

    Google Scholar 

  10. Hachmi M, Moslemi AA, Campbell AG (1990) A new technique to classify the compatibility of wood with cement. Wood Sci Technol 24(4):345–354

    Article  CAS  Google Scholar 

  11. Hernandez-Olivares F, Bollati MR, Del Rio M, Parga-Landa B (1999) Development cork-gypsum composites for building applications. Const Build Mater 13:179–186

    Article  Google Scholar 

  12. Holm TA (1994) Lightweight concrete and aggregates. 48. In: STP 169C. American Society for Testing of Materials, Philadelphia, pp 522–532

    Google Scholar 

  13. Hong Z, Lee AWC (1986) Compressive strength of cylindrical samples as an indicator of wood-cement compatibility. For Prod J 36(11):87–90

    Google Scholar 

  14. Karade SR (2003) An Investigation of Cork Cement Composites. Doctoral Thesis, Brunel University (UK)

  15. Karade SR, Irle M, Maher K (2001) Physico-chemical aspects of the use of cork in cementitious composites. In: Proc. of the Fifth International Conference on the Development of Wood Science, Wood Technology and Forestry. 5th–7th September, Ljubljana (Slovenia), pp 97–106

  16. Karade SR, Irle M, Maher K, Caldiera F (2002) Cork granules as lightweight aggregate. In: Dhir RK, Dyer TD, Halliday JE (eds) Sustainable concrete construction. Thomas Telford, London, pp 253–262

    Google Scholar 

  17. Karade SR, Irle M, Maher K (2003) Assessment of wood-cement compatibility: A new approach. Holzforschung 57:672–680

    Article  CAS  Google Scholar 

  18. McIlveen-Wright DR, Williams BC, McMullan JT, Evans RH, Gulyurtlu I (2000) Some energy and waste management options for cork processing plant. Environ Waste Manage 3(4):189–200

    Google Scholar 

  19. Moslemi AA (ed) (1989) Fibre and Particleboards Bonded with Inorganic Binders. For Prod Res Soc, Madison, Wisconsin

    Google Scholar 

  20. Moslemi AA (ed) (1991) Inorganic-Bonded Wood and Fibre Composite Materials. For Prod Res Soc, Madison, Wisconsin

    Google Scholar 

  21. Moslemi AA (ed) (1993) Inorganic-Bonded Wood and Fibre Composite Materials, vol. 3. For Prod Res Soc, Madison, Wisconsin

    Google Scholar 

  22. Moslemi AA (ed) (1995) Inorganic-Bonded Wood and Fibre Composite Materials, vol. 4. For Prod Soc, Spokane

    Google Scholar 

  23. Neville AM (1995) Properties of concrete. 4th ed. Prentice Hall, Pearson Education Ltd, Harlow, Essex, UK

    Google Scholar 

  24. Oliveira MAD, Oliveira LD (1991) The cork. Groupo Amorim

  25. Pereira H (1988) Chemical composition and variability of cork from Quercus suber L. Wood Sci Technol 22:211–218

    Article  CAS  Google Scholar 

  26. Pereira H, Melo B, Pinto R (1994) Yield and quality in the production of cork stoppers. Holz Roh- Werkst 52:211–214

    Article  Google Scholar 

  27. RILEM TCE 1 (1997) Adiabatic and semi-adiabatic calorimetry to determine the temperature increase in concrete due to hydration heat of the cement. Mater Struct 30:451–457

    Article  Google Scholar 

  28. Sandermann W, Kohler R (1964) Studies on mineral-bonded wood materials. IV. A short test of the aptitudes of woods for cement-bonded materials. Holzforschung 18:53–59

    Article  CAS  Google Scholar 

  29. Swamy RN (ed) (1988) Natural Fibre Reinforced Cement and Concrete. Blackie and Sons Ltd., Glasgow

    Google Scholar 

  30. T 207 om-93 (1993) Water Solubility of Wood and Pulp. TAPPI

  31. T 211 om-93 (1993) Ash in Wood, Pulp, Paper and Paperboard: Combustion at 525 °C. TAPPI

  32. Weatherwax RC, Tarkow H (1964) Effect of wood on setting of Portland cement. For Prod J 14(12):567–570

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark Irle.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karade, S., Irle, M. & Maher, K. Influence of granule properties and concentration on cork-cement compatibility. Holz Roh Werkst 64, 281–286 (2006). https://doi.org/10.1007/s00107-006-0103-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00107-006-0103-2

Keywords

Navigation