Advertisement

Holz als Roh- und Werkstoff

, Volume 63, Issue 6, pp 430–436 | Cite as

Experimental study of material properties of modified Scots pine

  • Hannah Epmeier
  • Robert KligerEmail author
ORIGINALARBEITEN ORIGINALS

Abstract

The mechanical and physical properties of modified timber were assessed by experimental work. The timber was modified using three different methods: acetylation with acetic anhydride, modification with methylated melamine formaldehyde resin and heat treatment in an oil bath. The wood material was sapwood of Scots pine (Pinus sylvestris) with dimensions of 45×70×1100 mm. A total of 99 specimens were included in this study. The following properties and their inter-relations were studied: density, modulus of elasticity (MOE), bending creep deflection and relative creep. It was found that all the modifications successfully reduced the relative creep. However, the performance properties of modified timber ought not to be calculated on the basis of density, as is the case for untreated wood. On the other hand, the long-term performance of modified timber can be assessed by its initial MOE and the difference in equilibrium moisture content (EMC) between two climates.

Keywords

Timber Melamine Equilibrium Moisture Content Untreated Wood Relative Creep 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Experimentelle Bestimmung einiger Materialeigenschaften von modifiziertem Kiefernholz

Zusammenfassung

Die mechanischen und physikalischen Eigenschaften von modifziertem Kiefernschnittholz wurden experimentell bestimmt. Das Schnittholz wurde mit drei verschiedenen Methoden modifiziert: Acetylierung mit Essigsäureanhydrid, Modifizierung mit methyliertem Melaminformaldehydharz und Hitzebehandlung im Ölbad. Das Probematerial war Kiefernsplintholz (Pinus sylvestris) mit den Abmessungen 45×70×1100 mm. Insgesamt wurden 99 Proben getestet. Die folgenden Eigenschaften und deren Korrelationen wurden untersucht: Dichte, dynamischer und statischer Elastizitätsmodul, Kriechverformung im Biegeversuch und relatives Kriechen. Alle Modifikationen reduzierten das relative Kriechen erheblich. Verwendungsrelevante Eigenschaften von modifiziertem Holz sollten nicht anhand der Dichte bewertet werden wie bei unbehandeltem Holz. Andererseits kann die Kriechverformung von modifiziertem Holz anhand seines Elastizitätsmoduls und dem Unterschied in der Ausgleichsholzfeuchte zwischen zwei Klimata abgeschätzt werden.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    van Acker J, Stevens M (1998) The impact of resin treatment on the mechanical properties of solid wood. Paper for the Workshop on Mechanical performance of non-standard wood, COST E8 Conference Mechanical Performance of Wood and Wood Products, Florence, ItalyGoogle Scholar
  2. 2.
    Bengtsson C (2001) Mechano-sorptive bending creep of timber – influence of material parameters. Holz Roh- Werkst 59:229–236CrossRefGoogle Scholar
  3. 3.
    Bengtsson C, Kliger R (2003) Bending creep of high-temperature dried spruce timber. Holzforschung 57:95–100CrossRefGoogle Scholar
  4. 4.
    Boyd J (1982) An anatomical explanation for viscoelastic and mechano-sorptive creep in wood and effect of loading rate on strength. In: Baas P (ed) New perspectives in Wood Anatomy. Nijhoff & Junk, Hague, pp 171–222Google Scholar
  5. 5.
    Deka M, Saikia CN, Baruah KK (2002) Studies on thermal degradation and termite resistant properties of chemically modified wood. Bioresource Technol 84:151–157CrossRefGoogle Scholar
  6. 6.
    Eaton RA, Hale MDC (1993) Wood – Decay, Pests and Protection. Chapman and Hall, pp 1–4Google Scholar
  7. 7.
    Epmeier H (2003) Properties of chemically modified wood. Thesis for the degree of licentiate of engineering. Chalmers University of Technology, Göteborg, SwedenGoogle Scholar
  8. 8.
    Hanhijärvi A (1995) Modelling of creep deformation mechanisms in wood. Doctoral thesis. Technical Centre of Finland, VTT publications 301, Espoo, FinlandGoogle Scholar
  9. 9.
    Hauška M, Bučar B (1996) Mechano-sorptive creep in adult, juvenile and reaction wood. In: Proceedings of the International COST 508 Wood Mechanics Conference, Stuttgart, GermanyGoogle Scholar
  10. 10.
    Hoffmeyer P, Davidson P (1989) Mechano-sorptive creep mechanism of wood in compression and bending. Wood Sci Tech 23:215–227CrossRefGoogle Scholar
  11. 11.
    Ilic J (2001) Relationship among the dynamic and static elastic properties of air-dry Eucalyptus delegatensis R. Baker. Holz Roh- Werkst 59:169–175CrossRefGoogle Scholar
  12. 12.
    Jermer J, Bengtsson C, Brem F, Clang A, Ek-Olausso B, Edlund M (2003) Heat-treated wood – durability and technical properties. SP Report 2003:25. Borås, SwedenGoogle Scholar
  13. 13.
    Kamdem DP, Pizzi A, Jermannaud A (2000) Durability of heat-treated wood. Holz Roh- Werkst 60:1–6CrossRefGoogle Scholar
  14. 14.
    Kollmann F, Côté W (1968) Principles of Wood Science and Technology 1. Solid Wood. Springer, HeidelbergGoogle Scholar
  15. 15.
    Kollmann F, Krech H (1960) Dynamische Messungen der elastischen Holzeigenschaften und der Dämpfung. Holz Roh- Werkst 18:41–54CrossRefGoogle Scholar
  16. 16.
    Kumar S (1994) Chemical modification of wood – state of the art review paper. Wood Fiber Sci 26(2):270–280Google Scholar
  17. 17.
    Larsson P, Simonson R (1994) A study of strength, hardness and deformation of acetylated Scandinavian softwoods. Holz Roh- Werkst 52:83–86CrossRefGoogle Scholar
  18. 18.
    Lukowsky D (2002) Influence of the formaldehyde content of waterbased melamine formaldehyde resins on physical properties of Scots pine impregnated therewith. Holz Roh- Werkst 60:349–355CrossRefGoogle Scholar
  19. 19.
    Mohager S, Toratti T (1993) Long term bending creep of wood in cyclic relative humidity. Wood Sci Technol 27:49–59Google Scholar
  20. 20.
    Morlier P (ed) (1994) Creep in timber structures. Report No 8 of RILEM Technical Committee 112-TSC, E & FN Spon, London, 139 ppGoogle Scholar
  21. 21.
    Mårtensson A (1992) Mechanical behaviour of wood exposed to humidity variations. PhD thesis, Lund Institute of Technology, Department of Structural Engineering, Lund, SwedenGoogle Scholar
  22. 22.
    Perstorper M (1993) Dynamic modal tests of timber – evaluation according to Euler and Timoshenko theory. In: Proceedings of the 9th International Symposium on Non-destructive Testing of Wood, Madison, USAGoogle Scholar
  23. 23.
    Preston A (2000) Wood Preservation – Trends of today that will influence the industry of tomorrow. For Prod J 50(9):12–19Google Scholar
  24. 24.
    Rapp A (1999) Physikalische und biologische Vergütung von Vollholz durch Imprägnierung mit wasserverdünnbaren Harzen. Dissertation zur Erlangung des Doktorgrades an der Universität Hamburg. Hamburg, GermanyGoogle Scholar
  25. 25.
    Rapp A, Sailer M (2000) Heat treatment of wood in Germany – state of the art. Paper prepared for the Seminar on heat-treated wood – properties and commodities, Helsinki, Stockholm, OsloGoogle Scholar
  26. 26.
    Ross RJ, Pellerin RF (1994) Nondestructive testing for assessing wood members in structures: A review. Gen. Tech. Rep. FPL-GTR-70 (Rev.). Madison, WI: U.S. Department of Agriculture, Forest Service, Forest Products Laboratory 40 pGoogle Scholar
  27. 27.
    Rowell RM (ed) (1984) The Chemistry of Solid Wood. Am Chem Soc, Washington, D.C.Google Scholar
  28. 28.
    Rowell RM, Tillman AM, Simonson R (1986) A simplified procedure for acetylation of hardwood and softwood flakes for flakeboard production. J Wood Chem Technol 6(3):427–448CrossRefGoogle Scholar
  29. 29.
    Santos J (2000) Mechanical behaviour of Eucalyptus wood modified by heat. Wood Sci Tech 34:39–43CrossRefGoogle Scholar
  30. 30.
    Schniewind AP (ed) (1989) Concise Encyclopedia of Wood and Wood-based Materials. Pergamon PressGoogle Scholar
  31. 31.
    Smulski SJ (1991) Relationship of stress wave- and static bending determined properties of four Northeastern hardwoods. Wood Fiber Sci 23:44–57Google Scholar
  32. 32.
    Tjeerdsma B, Boonstra M, Pizzi P, Tekely H, Militz H (1998) Characterisation of thermally modified wood – molecular reasons for wood performance improvement. Holz Roh- Werkst 56(3):149–153CrossRefGoogle Scholar
  33. 33.
    Toratti T, Svensson S (2000) Mechano-sorptive experiments perpendicular to grain under tensile and compressive loads. Wood Sci Technol 34:317–326CrossRefGoogle Scholar
  34. 34.
    Yano H, Norimoto M, Rowell RM (1993) Stabilization of acoustical properties of wooden musical instruments by acetylation. Wood Fiber Sci 25(4):395–403Google Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  1. 1.Steel and Timber Structures, Department of Structural EngineeringChalmers University of TechnologyGöteborgSweden

Personalised recommendations