Holz als Roh- und Werkstoff

, Volume 63, Issue 5, pp 327–333 | Cite as

Variation of certain chemical properties within the stemwood of black locust (Robinia pseudoacacia L.)

  • S. Adamopoulos
  • E. Voulgaridis
  • C. Passialis


From the bottom, middle, and top of three mature 35 to 37-year old black locust tree discs were cut and analysed to determine the variation within the stem of certain chemical properties. Hot-water extractive content was greater in heartwood than in sapwood, while the reverse occurred for the dichloromethane extractive content. Vertical stem analysis of hot-water extractives showed that they increased in heartwood but decreasedin sapwood from the bottom to the top of the stems while the reversal occurred for dichloromethane extractive content of sapwood. At the bottom and the middle of the stems, ash content was greater in sapwood than in heartwood, but at the top no difference was found between heartwood and sapwood. Ash content of both heartwood and sapwood was found to increase in the axial direction with respective values of 0.36% (bottom) and 0.76% (top) for heartwood and of 0.65% (bottom) and 0.76% (top) for sapwood. Ash analysis showed that considerable variations were found for the inorganic elements K and P being greater in sapwood than in heartwood. Heartwood was more acid than sapwood except for the top of the stems. Acidity mean values were found to increase from the bottom to the top of the stems in heartwood while they slightly decreased in sapwood. Total buffering capacity of heartwood was greater than that of sapwood and total buffering capacity of sapwood exhibited an inverse relationship to height. Very small acid equivalent values were determined only in sapwood. At the bottom, lignin content in heartwood (25.73%) was greater than in sapwood (18.13%). Lignin content of heartwood decreased from 25.73% at the bottom to 18.33% at the top, while that of sapwood was 18.13% at the bottom, 21.42% at the middle and 19.64% at the top.


Lignin Content Extractive Content Black Locust Robinia Pseudoacacia Fengel 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Variation verschiedener chemischer Eigenschaften im Stammholz von Robinie (Robinia pseudoacacia L.)


Vom unteren, mittleren und oberen Teil der Stämme von drei ausgewachsenen 35–37 Jahre alten Robinien wurden Stammscheiben herausgeschnitten und analysiert, um die Variation bestimmter chemischer Eigenschaften innerhalb des Stammes zu bestimmen. Insgesamt war der Heisswasser-Extraktstoffgehalt im Kernholz höher als im Splintholz, während für den Di-Chlormethan-Extraktstoffgehalt das Gegenteil der Fall war. Die senkrechte Stammanalyse der Heisswasser-Extraktstoffe ergab, dass der Extraktstoffgehalt im Kernholz vom unteren Stammende zum Zopf hin zunahm, aber im Splintholz abnahm, während der Di-Chlormethan-Extraktstoffgehalt im Splintholz zum Zopf hin zunahm. Die unteren und mittleren Stammteile wiesen im Splintholz einen höheren Aschegehalt auf als im Kernholz. Im oberen Teil unterschied sich der Aschegehalt zwischen Kern- und Splintholz nicht. Der Aschegehalt stieg sowohl im Kern- als auch im Splintholz in Stammlängsrichtung an, im Kernholz von 0.36% (unten) auf 0.76% (oben) und im Splintholz von 0.65% (unten) auf 0.76% (oben). Die Aschenanalyse ergab beträchtliche Schwankungen bei den anorganischen Elementen K und P. Im Splintholz waren diese höher als im Kernholz. Das Kernholz lag mit Ausnahme des oberen Stammbereichs mehr im sauren Bereich als Splintholz. Die durchschnittlichen Säurewerte nahmen im Kernholz in Stammlängsrichtung von unten nach oben zu und im Splintholz leicht ab. Die Gesamtpufferkapazität im Kernholz war grösser als im Splintholz, wo sie mit zunehmender Stammhöhe abnahm. Der Ligningehalt war im unteren Stammbereich im Kernholz höher (25.73%) als im Splintholz (18.13%). Im Kernholz verringerte sich der Ligningehalt von 25.73% im unteren Stammbereich auf 18.33% im Zopfbereich, während der Ligningehalt im Splintholz im unteren Teil bei 18.13% lag, in der Mitte bei 21.42% und im Zopfbereich bei 19.64%.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ahn WY (1985) Strength properties and chemical composition of black locust, Robinia pseudoacacia. Wood Sci Technol (Mogjae-Conghak), Korea Republic, 13(6):3–8Google Scholar
  2. 2.
    Arabatzis G (2003) The personal and social characteristics of investors–black locust (Robinia pseudoacacia L.) cultivators and the factors that affect the size of black locust plantations according to the EEC regulation 2080/92. Geotech Sci Issues 1:5–14 (in Greek)Google Scholar
  3. 3.
    ASTM standard (1984) D 1102, standard test method for ash in wood. American Society for Testing and Materials, Philadelphia, PennsylvaniaGoogle Scholar
  4. 4.
    ASTM standard (1984) D 1108, standard test method for dichloromethane solubles in wood. American Society for Testing and Materials, Philadelphia, PennsylvaniaGoogle Scholar
  5. 5.
    ASTM standard (1984) D 1110, standard test methods for water solubility of wood. American Society for Testing and Materials, Philadelphia, PennsylvaniaGoogle Scholar
  6. 6.
    Barrett RP, Mebrahtu T, Hanover JW (1990) Black locust: A multi-purpose tree species for temperate climates. In: Janick J, Simon JE (eds) Advances in new crops. Timber Press, Portland, OR, pp 278–283Google Scholar
  7. 7.
    Chen T-Y, Paulitsch M (1974) Inhaltsstoffe von Nadeln, Rinde und Holz der Fichte und Kiefer und ihr Einfluss auf die Eigenschaften daraus hergesteller Spanplatten. Holz Roh Werkst 32:397–401Google Scholar
  8. 8.
    Chow P, Rolfe GL, Shupe TF (1996) Some chemical constituents of ten-year-old american sycamore and black locust grown in Illinois. Wood Fiber Sci 28(2):186–193Google Scholar
  9. 9.
    Fengel D, Wegener G (1984) Wood: Chemistry, Ultrastructure, Reactions. Walter de Gruyter, Berlin New York, p 57Google Scholar
  10. 10.
    Geyer WA, Walawender WP (1994) Biomass properties and gasification behavior of young black locust. Wood Fiber Sci 26(3):354–359Google Scholar
  11. 11.
    Hanover JW (1992) Black locust: An historical and future perspective. In: Proc. International Conf. on Black Locust: Biology, Culture and Cultivation, June 17–21, 1991, Michigan State Univ., East Lansing, MI, pp 277Google Scholar
  12. 12.
    Hart JH (1968) Morphological and chemical differences between sapwood, discolored sapwood, and heartwood in black locust and osage orange. Forest Sci 14(3):334–338Google Scholar
  13. 13.
    Johns WE, Niazi K (1980) Effect of pH and buffering capacity of wood on the gelation time of ureaformaldehyde resin. Wood Fiber Sci 12:255–263Google Scholar
  14. 14.
    Keresztesi B (1981) The black locust. Unasylva 32:23–33Google Scholar
  15. 15.
    Keresztesi B (1988) The Black Locust. Forestry Monograph-Series of the Agricultural Science Department of the Hungarian Academy of Sciences, Budapest, Hungary, pp 197Google Scholar
  16. 16.
    Koloc K (1953) Werkstoff. Kartei Holz GrundmappeGoogle Scholar
  17. 17.
    Kopitovic S, Klasnja B, Guzina V (1989) Importance of structural, physical and chemical properties of Robinia wood (Robinia pseudoacacia L.) for its mechanical characteristics. Drevarsky Vyskum 122:13–30Google Scholar
  18. 18.
    Lee CS (1983) The chemical and physical properties of two-year short-rotation deciduous trees. For Prod J 6(11):322–323Google Scholar
  19. 19.
    Maloney TM (1977) Modern Particleboard and Dry-Process Fiberboard Manufacturing. Miller-Freeman, San FranciscoGoogle Scholar
  20. 20.
    Molnar S (1995) Wood properties and utilization of Black Locust in Hungary. Drevarsky Vyskum 1:27–33Google Scholar
  21. 21.
    Myers GC (1978) How adjusting fiber acidity improved strength of dry-formed hardboards. For Prod J 28(3):48–50Google Scholar
  22. 22.
    Nelson ND (1973) Effects of wood and pulp properties on medium-density, dry-formed hardboard. For Prod J 23(9):72–80Google Scholar
  23. 23.
    Pappas C, Tarantilis A, Polissiou M (1998) Determination of Kenaf (Hibiscus cannabinus L.) lignin in crude plant material using Diffuse Reflectance Infrared Fourier Transform Spectroscopy. Appl Spectrosc 52:1399–1403CrossRefGoogle Scholar
  24. 24.
    Redei K (1999) Black locust (Robinia pseudoacacia L.) energy plantations in Hungary. Silva Gandavensis 64:37–43Google Scholar
  25. 25.
    Rendle BJ (ed) (1972) World Timbers. Vol. 1. Europe and Africa. E. Benn Ltd., LondonGoogle Scholar
  26. 26.
    Sandermann W, Rothkamm M (1959) The determination of pH values of woods and their practical importance. Holz Roh Werkst 17:433–440CrossRefGoogle Scholar
  27. 27.
    Slay JR, Short PH, Wright DC (1980) Catalytic effects of extractives from pressure-refined fiber on the gel time of urea-formaldehyde resin. For Prod J 30(3):22–23Google Scholar
  28. 28.
    So WT, Park SJ, Kim JK, Shim K, Lee KY, Hyun JW, Lee HS, Kang SK, Jo JM (1980) On wood properties of imported (introduced) species grown in Korea. Wood properties of Pinus stobus, Pinus silvestris, Pinus banksiana, Picea abies and Robinia pseudoacacia. Res Rep For Res Inst S Korea 27:7–31Google Scholar
  29. 29.
    Stringer JW (1981) Factors affecting the variation in heat content of black locust biomass. Ms. thesis, University of Kentucky, pp 156Google Scholar
  30. 30.
    Stringer JW (1992) Wood properties of black locust (Robinia pseudoacacia L.): physical, mechanical, and quantitative chemical variability. In: Proc. International Conf. on Black Locust: Biology, Culture and Cultivation. June 17–21 1991, Michigan State Univ., East Lansing, MI, pp 277Google Scholar
  31. 31.
    Stringer JW, Carpenter SB (1986) Energy yield of black locust biomass fuel. Forest Sci 32(4):1049–1057Google Scholar
  32. 32.
    Stringer JW, Olson JR (1987) Radial and vertical variations in stem properties of juvenile black locust (Robinia pseudoacacia L.). Wood Fiber Sci 19(1):59–67Google Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  1. 1.Department of Forestry and Natural Environment, Laboratory of Forest UtilizationAristotle UniversityThessalonikiGreece

Personalised recommendations