Holz als Roh- und Werkstoff

, Volume 63, Issue 3, pp 167–172 | Cite as

The influence of wood fiber direction, feed rate, and cutting width on sound intensity during routing

  • P. Iskra
  • C. Tanaka


This study examines the possibility of using sound intensity to monitor the wood routing process at different machining conditions. Sound intensity is defined as the rate of flow of acoustic energy per unit area in a specified direction. For this study, specimens of Japanese beech (Fagus crenata Blume) were routed on a CNC machine tool equipped with an automatic feed. The effect of wood grain angle on the sound intensity energy generated and surface roughness produced was determined. Maximum sound intensity during routing was generated at an inclination of 135° to the grain. A linear relationship between sound intensity output and workpiece feed rate was recognized. Sound intensity and surface roughness are also strongly correlated, irrespective of feed rate. In contrast, sound intensity more than doubled with doubling of cutting width, whereas surface roughness did not increase. The results suggest that the measurement of sound intensity is a promising method for monitoring surface roughness and determining optimum feed rates.


Surface Roughness Feed Rate Acoustic Emission Tool Wear Inclination Angle 

Einfluss der Richtung der Holzfasern, des Vorschubs und der Schnittbreite auf die Schallintensität beim Fräsen


Diese Arbeit untersucht die Möglichkeit, mit Hilfe der Schallintensität den Fräsprozess unter verschiedenen Bedingungen zu überwachen. Hierzu wurden Buchenproben (Fagus crenata Blume) auf einer CNC-Maschine mit automatischer Probenzufuhr gefräst. Der Einfluss des Faserwinkels auf die Intensität der erzeugten Schallenergie und die resultierende Oberflächenrauhigkeit wurden gemessen. Die höchste Schallintensität während des Fräsens entstand bei einer Neigung von 135° zur Faser. Zwischen Schallintensität und Vorschub des Werkstücks zeigte sich ein linearer Zusammenhang. Schallintensität und Oberflächenrauhigkeit sind ebenfalls streng korreliert, und zwar unabhängig vom Vorschub. Demgegenüber ergab sich kein Anstieg der Oberflächenrauhigkeit, wenn die Schallintensitat sich bei Verdoppelung der Schnittbreite ebenfalls verdoppelte. Aufgrund der Ergebnisse kann die Messung der Schallintensität benutzt werden, um die Oberflächenrauhigkeit zu überwachen und den optimalen Vorschub zu bestimmen.


  1. Banshoya K, Ohsaki H, Nagatomi K, Murase Y (1994) Relationship between cutting sound and tool wear in machine boring of wood and wood-based materials. Mokuzai Gakkaishi 40(4):521–528Google Scholar
  2. Dornfeld DA, Lemaster RL (1982) Sensing of tool wear by acoustic emission. In: Proceedings of the 7th wood machining seminar, pp 312–323Google Scholar
  3. Fahy FJ (1995) Sound intensity, 2nd edn. E and FN Spon, an imprint of Chapman and Hall, LondonGoogle Scholar
  4. ISO 4288: (1996) Geometrical Product Specification (GPS)—surface texture: Profile method—rules and procedures for the assessment of surface textureGoogle Scholar
  5. ISO 4287: (1997) Geometrical Product Specification (GPS)—surface texture: Profile method—terms, definitions and surface texture parametersGoogle Scholar
  6. Ko PL, Liu ZS, Cvitkovic R, Donovan M, Loewen R, Krishnapper G (1999) Tool wear monitoring for routing MDF. In: Proceedings of the 14th international wood machining seminar, pp 609–619Google Scholar
  7. Lemaster RL, Dornfeld DA (1985) Monitoring tool wear during wood machining with acoustic emission. Wear 101:273–282CrossRefGoogle Scholar
  8. Lemaster RL, Lu L, Jackson S (2000) The use of process monitoring techniques on a CNC wood router. Part 2. Use of a vibration accelerometer to monitor tool wear and workpiece quality. Forest Prod J 50(9):59–64Google Scholar
  9. Lin SC, Lin RJ (1996) Tool wear monitoring in face milling using force signal. Wear 198:136–142CrossRefGoogle Scholar
  10. Murata K, Nishimura K, Ikami Y, Ebihara M (1993) Sawing performances of band saws treated with new filling methods II. Power consumption in sawing, sawing accuracy, and roughness of sawn surface. Mokuzai Gakkaishi 39(11):1239–1245Google Scholar
  11. Nagatomi K, Yoshida K, Banshoya K, Murase Y (1993) Recognition of wood cutting conditions through cutting sounds I. Effects of tool system’s stiffness and tool wear on the generation of sound in cutting parallel to the grain. Mokuzai Gakkaishi 39(11):521–528Google Scholar
  12. Tanaka C, Nakao T, Takahashi A (1988) A new technique for adaptive control optimization in circular sawing. Mokuzai Gakkaishi 34(9):769–771Google Scholar
  13. Tanaka C, Nakao T, Takahashi A, Schniewind AP (1990) On-line control of feed-speed in circular sawing. Holz Roh-Werkstoff 48:139–145CrossRefGoogle Scholar
  14. Tanaka C, Zhao C, Nakao T, Nishino Y, Takahashi A (1993) An adaptive control optimization for circular sawing. Forest Prod J 43(9):61–65Google Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  1. 1.Department of Natural Resources Process Engineering, Faculty of Science and EngineeringShimane UniversityJapan

Personalised recommendations