Holz als Roh- und Werkstoff

, Volume 62, Issue 5, pp 370–377

Wood-cement composites: a review

ORIGINALARBEITEN · ORIGINALS
  • 922 Downloads

Abstract

This paper reviews the research reported mostly in the last 10 years in the most common journals on the wood-cement composites field. The focused topics include: the problem of the compatibility (or not) between cement and woods, what causes it, ways of overcoming the problem; methods for manufacture and the properties exhibited by common wood-composites; special techniques to accelerate the curing of cement and to improve the properties of wood-cement composites; manufacture of nonwood vegetable raw materials-cement composites; durability against weathering and fungi; and construction materials. A discussion on the state-of-the-art is also presented.

Holz-Zement-Werkstoffe: Ein Überblick

Zusammenfassung

Dieser Artikel gibt einen Überblick über die Forschung der letzten 10 Jahre in den bekanntesten Zeitschriften, die über das Gebiet der Holz-Zement-Werkstoffe berichteten. Die konzentrierten Themen beinhalten: Das Problem der Kompatibilität oder Nicht-Kompatibilität zwischen Zement und Holz, was es verursacht und wie man es überwinden kann; Methoden zur Herstellung und die Eigenschaften, die bei üblichen Holz-Werkstoffen gefunden werden; spezielle Techniken, um die Aushärtung von Zement zu beschleunigen und die Eigenschaften von Holz-Zement-Werkstoffen zu verbessern; die Herstellung von Zement-Werkstoffen aus anderen Pflanzenrohmaterialien; Resistenz gegen Witterung und Pilze sowie Konstruktionsmaterialien. Eine Diskussion als Stand der Forschung wird ebenfalls präsentiert.

References

  1. Alberto MM, Mougel E, Zoulalian A (2000) Compatibility of some tropical hardwoods species with Portland cement using isothermal calorimetry. Forest Prod J 50(9):83–88Google Scholar
  2. Badejo SOO (1988) Effect of flake geometry on properties of cement-bonded particleboard from mixed tropical hardwoods. Wood Sci Technol 22:357–370Google Scholar
  3. Berger RL, Young JF, Leun K (1972) Acceleration of hydration of calcium silicates by carbon dioxide treatment. Nature Physical Sci 240(97):16–18Google Scholar
  4. Coutinho AS (1997) Manufacture and properties of concrete. Vol. I. LNEC—National Laboratory of Civil Engineering, Lisbon (in Portuguese)Google Scholar
  5. Eusebio DA, Imamura Y, Kawai S, Sasaki H (1993a) Isocyanate-inorganic bonded composites I. Tensile strength an scanning electron microscope observations of isocyanate-cement mixtures. Mokuzai Gakkaishi 39(1):31–39Google Scholar
  6. Eusebio DA, Imamura Y, Kawai S, Sasaki H (1993b) Isocyanate-inorganic bonded composites II. Shortening the pressing time of cement bonded particleboard. Mokuzai Gakkaishi 39(11):1267–1275Google Scholar
  7. Eusebio DA, Kuroki Y, Nagadomi W, Kawai S, Sasaki H (1995) Rapid curing of cement-bonded particleboard I. Steam injection pressing of cement-bonded particleboard with sodium hydrogen carbonate. Mokuzai Gakkaishi 41(3):309–317Google Scholar
  8. Fan M, Dinwoodie JM, Bonfield PW, Breese MC (1999) Dimensional instability of cement-bonded particleboard: behavior of cement paste and its contribution to the composite. Wood Fibre Sci 31(3):306–318Google Scholar
  9. Geimer RL, Souza MR, Moslemi AA, Simatupang MH (1992) Carbon dioxide application for rapid curing of cement particleboard. In: Proc. Inorganic Bonded Wood and Fibre Materials Symposium, Univ. Idaho, Moscow, Idaho, USA, Sept. 1992Google Scholar
  10. Gnanaharan R, Dhamodaran TK (1985) Suitability of some tropical hardwoods for cement-bonded wood-wool board manufacture. Holzforschung 39(6):337–240Google Scholar
  11. Goodell B, Daniel G, Liu J, Mott, Frank R (1997) Decay resistance and microscopic analysis of wood-cement composites. Forest Prod J 47(11/12):75–80Google Scholar
  12. Hachmi M, Moslemi AA (1989) Correlation between wood-cement compatibility and wood extractives. Forest Prod J 39(6):55–58Google Scholar
  13. Hachmi M, Moslemi (1990) Effect of wood pH and buffering capacity on wood-cement compatibility. Holzforschung 44(6):425–430Google Scholar
  14. Hachmi M, Moslemi AA, Campbell AG (1990) A new technique to classify the compatibility of wood with cement. Wood Sci Technol 24:345–354Google Scholar
  15. Hermawan D, Hata T, Umemura K, Kawai S, Kaneko S, Kuroki Y (2000) New technology for manufacturing high-strength cement-bonded particleboard using supercritical carbon dioxide. J Wood Sci 46:85–88Google Scholar
  16. Hermawan D, Hata T, Umemura K, Kawai S, Nagadomi W, Kuroki Y (2001a) Rapid production of high-strength cement-bonded particleboard using gaseous or supercritical carbon dioxide. J Wood Sci 47:294–300Google Scholar
  17. Hermawan D, Subiyanto B, Kawai S (2001b) Manufacture and properties of oil palm frond cement-bonded board. J Wood Sci 47:208–213Google Scholar
  18. Hermawan D, Hata T, Kawai S, Nagadomi W, Kuroki Y (2002) Manufacturing oil palm fronds cement-bonded board cured by gaseous or supercritical carbon dioxide. J Wood Sci 48:20–24Google Scholar
  19. Hofstrand AD, Moslemi AA, Garcia JF (1984) Curing characteristics of wood particles from nine northern Rocky Mountain species mixed with Portland cement. Forest Prod J 34(2):57–61Google Scholar
  20. Iddi S, Hamza KFS, Ringo WN, Ishengoma RC (1992) The suitability of some Tanzanian hardwoods for the manufacture of cement particleboards. Holz Roh- Werkstoff 50:280–281Google Scholar
  21. Imai T, Suzuki M, Aoyama K, Kawasaki Y, Yasuda S (1995) Manufacture of wood-cement boards VI. Cement-hardening inhibitory compound of beech (Fagus crenata Blume). Mokuzai Gakkaishi 41(1):44–50Google Scholar
  22. Lee AWC (1984) Physical and mechanical properties of cement bonded southern pine excelsior board. Forest Prod J 34(4):30–34Google Scholar
  23. Lee AWC (1985a) Effect of cement/wood ration on bending properties of cement-bonded southern pine excelsior board. Wood Fibre Sci 17(3):361–364Google Scholar
  24. Lee AWC (1985b) Bending and thermal insulation properties of cement-bonded cypress excelsior board. Forest Prod J 25(11/12):57–58Google Scholar
  25. Lee AWC, Hong Z (1986) Compressive strength of cylindrical samples as an indicator of wood-cement compatibility. Forest Prod J 36(11/12):87–90Google Scholar
  26. Lee AWC, Hong Z, Phillips DR, Hse CY (1987) Effect of cement/wood ratios and wood storage conditions on hydration temperature, hydration time, and compressive strength of wood-cement mixtures. Wood Fibre Sci 19(3):262–268Google Scholar
  27. MacVicar R, Matuana LM, Balatinecz JJ (1999) Aging mechanisms in cellulose fibre reinforced cement composites. Cement Concr Compos 21:189–196CrossRefGoogle Scholar
  28. Miller DP, Moslemi AA, Short PH (1989) The use of fly ash in wood-cement composites. Forest Prod J 39(9):34–38Google Scholar
  29. Miller DP, Moslemi AA (1991a) Wood-cement composites: species and heartwood-sapwood effects on hydration and tensile strength. Forest Prod J 41(3):9–14Google Scholar
  30. Miller DP, Moslemi AA (1991b) Wood-cement composites: effect of model compounds on hydration characteristics and tensile strength. Wood Fibre Sci 23(4):472–482Google Scholar
  31. Moslemi AA, Francisco Garcia J, Hofstrand AD (1983) Effect of various treatments and additives on wood-Portland cement-water systems. Wood Fibre Sci 15(2):164–176Google Scholar
  32. Moslemi AA, Lim YT (1984) Compatibility of southern hardwoods with Portland cement. Forest Prod J 34(7/8):22–26Google Scholar
  33. Moslemi AA, Pfister SC (1987) The influence of cement/wood ratio and cement type on bending strength and dimensional stability of wood-cement panels. Wood Fibre Sci 19(2):165–175Google Scholar
  34. Mougel E, Beraldo AL, Zoulalian A (1995) Controlled dimensional variations of a wood-cement composite. Holzforschung 49(5):471–477Google Scholar
  35. Nagadomi W, Kuroki Y, Eusebio DA, Ma L, Kawai S, Sasaki H (1996a) Rapid curing of cement-bonded particleboard II. Curing mechanism of cement with sodium hydrogen carbonate during steam injection pressing. Mokuzai Gakkaishi 42(7):659–667 (in Japanese)Google Scholar
  36. Nagadomi W, Kuroki Y, Eusebio DA, Ma L, Kawai S, Sasaki H (1996b) Rapid curing of cement-bonded particleboard III. Effects of sodium hydrogen carbonate and some cement hardening accelerators. Mokuzai Gakkaishi 42(8):762–768 (in Japanese)Google Scholar
  37. Nagadomi W, Kuroki Y, Eusebio DA, Ma L, Kawai S, Sasaki H (1996c) Rapid curing of cement-bonded particleboard IV. Sodium silicate as a fortifier during steam injection pressing. Mokuzai Gakkaishi 42(8):769–775 (in Japanese)Google Scholar
  38. Nagadomi W, Kuroki Y, Eusebio DA, Ma L, Kawai S, Sasaki H (1996d) Rapid curing of cement-bonded particleboard V. Mechanism of strength development with fortifiers and accelerators during steam injection pressing. Mokuzai Gakkaishi 42(10):977–984 (in Japanese)Google Scholar
  39. Nagadomi W, Kuroki Y, Kawai S, Sasaki H (1996e) Rapid curing of cement-bonded particleboard with silica fume I. Effects of an additive for cement hydration during steam injection pressing. Mokuzai Gakkaishi 42(11):1090–1097 (in Japanese)Google Scholar
  40. Nagadomi W, Kuroki Y, Kawai S, Sasaki H (1996f) Rapid curing of cement-bonded particleboard with silica fume II. Effects of autoclave on cement hydration. Mokuzai Gakkaishi 42(12):1202–1210 (in Japanese)Google Scholar
  41. Olorunnisola AO, Adefisan OO (2002) Trial production and testing of cement-bonded particleboard from rattan furniture waste. Wood Fibre Sci 34(1):116–124Google Scholar
  42. Pereira C, Caldeira Jorge F, Irle M and Ferreira JMF (2001) Investigation of the extractives of portuguese maritime pine, blue gum and cork, to understand their influence on cement hardening. First data: extractive contents. In: Proc. 5th European Panel Products Symposium, Llandudno, North Wals, UK, 10–12 October 2001Google Scholar
  43. Pereira C, Caldeira Jorge F, Irle M and Ferreira JMF (2002) Adsorption of calcium, and other cations from a cement suspension, on lignocellulosic substrates and their influence on cement setting. In: Proc. 6th European Panel Products Symposium, Llandudno, North Wals, UK, 9–11 October 2002Google Scholar
  44. Ramirez-Coretti A, Eckelman CA, Wolfe RW (1998) Inorganic-bonded composite wood panel systems for low-cost housing: a Central American perspective. Forest Prod J 48(4):62–68Google Scholar
  45. Rashwan MS, Hatzinikolas M, Zmavc R (1992) Development of a lightweight, low-cost concrete block using wood residue. Forest Prod J 42(5):57–64Google Scholar
  46. Rim KA, Ledhem A, Douzane O, Dheilly RM, Queneudec M (1999) Influence of the proportion of wood on the thermal and mechanical performances of clay-cement-wood composites. Cement Concr Compos 21:269–276CrossRefGoogle Scholar
  47. Roffael von E, Sattler H (1991) Studies on the interaction between lignocellulosics (straw pulps) and cement. Holzforschung 45(6):445–454 (in German)Google Scholar
  48. Rosenberg NP, Ince P, Skog K, Plantinga A (1990) Understanding the adoption of new technologies in the forest products industry. Forest Prod J 40(10):15–22Google Scholar
  49. Sandermann W, Kohler R (1964) Studies on mineral-bonded wood materials. IV. A short test of the aptitudes of woods for cement-bonded materials. Holzforschung 18:53–59Google Scholar
  50. Sauvat N, Sell R, Mougel E, Zoulalian A (1999) A study of ordinary Portland cement hydration with wood by isothermal calorimetry. Holzforschung 53(1):104–108Google Scholar
  51. Savastano Jr H, Warden PG, Coutts RSP (2000) Brazilian waste fibres as reinforcement for cement-based composites. Cement Concr Compos 22:379–384CrossRefGoogle Scholar
  52. Schmidt R, Marsh R, Balatinecz JJ, Cooper PA (1994) Increased wood-cement compatibility of chromated-treated wood. Forest Prod J 44(7/8):44–46Google Scholar
  53. Semple KE, Evans PD (1998) Compatibility of some Australian acacias with Portland cement. Holz Roh- Werkstoff 56:24Google Scholar
  54. Semple K, Evans PD (2000) Adverse effects of heartwood on the mechanical properties of wood-wool cement boards manufactured from radiata pine wood. Wood Fibre Sci 32(1):37–43Google Scholar
  55. Semple KE, Cunningham RB, Evans PD (1999) Cement hydration tests using wood flour may not predict the suitability of Acacia mangium and Eucalyptus pellita for the manufacture of wood-wool cement boards. Holzforschung 53(3):327–332Google Scholar
  56. Semple KE, Evans PD, Cunningham RB (2000) Compatibility of 8 temperate Australian Eucalyptus species with Portland cement. Holz Roh- Werkstoff 58:315–316Google Scholar
  57. Simatupang MH, Habighorst C, Lange H, Neubauer A (1995) Investigations on the influence of the addition of carbon dioxide on the production and properties of rapidly set wood-cement composites. Cement Concr Compos 17:187–197CrossRefGoogle Scholar
  58. Simatupang MH, Handayani SA (2001) Fermentation of saw dust from freshly cut rubber wood to improve its cement compatibility. Holz Roh- Werkstoff 59:27–28Google Scholar
  59. Stahl DC, Cramer SM, Geimer RL (1997) Effects of microstructural heterogeneity in cement excelsior board. Wood Fibre Sci 29(4):345–352Google Scholar
  60. Tachi M, Tange J, Nagadomi W, Suzuki Y, Terashima N, Yasuda S (1989) Manufacture of wood-cement boards IV. Cement-hardening inhibitory components of the Malaysian fast-growing tree, Acacia mangium. Mokuzai Gakkaishi 35(8):731–735Google Scholar
  61. Weatherwax RC, Tarkow H (1964) Effect of wood on setting of Portland cement. Forest Prod J 14:567–570Google Scholar
  62. Wei YM, Zhou YG, Tomita B (2000) Hydration behavior of wood cement-based composite I: evaluation of wood species effects on compatibility and strength with ordinary Portland cement. J Wood Sci 46:296–302Google Scholar
  63. Wei Y, Tomita B (2001) Effects of five additive materials on mechanical and dimensional properties of wood cement-bonded boards. J Wood Sci 47:437–444Google Scholar
  64. Wolfe RW, Gjinolli A (1999) Durability and strength of cement-bonded wood particle composites made from construction waste. Forest Prod J 49(2):24–31Google Scholar
  65. Yasuda S, Iwase Y, Seguchi Y, Takemura T, Matsushita Y (1992) Manufacture of wood-cement boards V. Cement-hardening inhibitory components of sugi heartwood and behavior of catechol as a simple inhibitor model with vicinal phenolic hydroxyl groups in cement paste. Mokuzai Gakkaishi 38(1):52–58Google Scholar
  66. Zhengtian L, Moslemi AA (1985) Influence of chemical additives on the hydration characteristics of western larch wood-cement-water mixtures. Forest Prod J 35(7/8):37–43Google Scholar
  67. Zhengtian L, Moslemi AA (1986) Effect of western larch extractives on cement setting. Forest Prod J 36(1):53–54Google Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  1. 1.CEMAS—Centre for Modelling and Environmental Systems AnalysisFaculty of Science and Technology, Fernando Pessoa UniversityOportoPortugal
  2. 2.Department of Ceramics and Glass EngineeringCICECO, University of AveiroPortugal

Personalised recommendations