Advertisement

HNO

pp 1–7 | Cite as

Jüngste Entwicklungen in der Kopf-Hals-Immunologie

Grundlage für neue Therapiestrategien?
  • C. A. ReichelEmail author
Leitthema
  • 12 Downloads

Zusammenfassung

Immunologische Vorgänge spielen eine wesentliche Rolle bei der Pathogenese von Erkrankungen des Kopf-Hals-Bereichs. In diesem Zusammenhang ist nicht nur an Allergien oder an Infektionen im Bereich der Mandeln, der Nasennebenhöhlen und des Ohres zu denken, auch Entstehung, Wachstum und Metastasierung von malignen Tumoren des Kopf-Hals-Bereichs werden maßgeblich vom Immunsystem beeinflusst. Die Rekrutierung von weißen Blutkörperchen zum Ort der Schädigung oder Infektion stellt dabei ein zentrales Ereignis dar. In diesem Beitrag wird dem Hals-Nasen-Ohren-Arzt eine kompakte Übersicht über neue Erkenntnisse in diesem sich rasch fortentwickelnden Bereich der HNO-Heilkunde gegeben. Dieses Wissen könnte in den nächsten Jahren die Grundlage für vielversprechende Therapiestrategien zu bislang nur unzureichend behandelbaren Erkrankungen im HNO-Fachgebiet bilden.

Schlüsselwörter

Entzündung Leukozyten Thrombose Kopf-Hals-Tumoren Akuter Hörsturz 

Recent developments in head and neck immunology

A basis for novel therapeutic strategies?

Abstract

Immunological processes play a key role in the pathogenesis of head and neck pathologies. Besides allergies or infections of the tonsils, the paranasal sinuses, and the ear, initiation, progression, and metastasis of malignant tumors are particularly dependent on the immune system. The recruitment of white blood cells to the site of injury or infection is a critical event in the pathogenesis of these diseases. This article will provide a compact overview about recent developments in this rapidly growing field in otorhinolaryngology which might establish the basis for promising therapeutic strategies for previously insufficiently treatable disorders of the head and neck.

Keywords

Inflammation Leukocytes Thrombosis Head and neck neoplasms Sudden hearing loss 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

C.A. Reichel gibt an, dass kein Interessenkonflikt besteht.

Alle nationalen Richtlinien zur Haltung und zum Umgang mit Labortieren wurden eingehalten und die notwendigen Zustimmungen der zuständigen Behörden liegen vor.

Literatur

  1. 1.
    Auffray C, Fogg D, Garfa M et al (2007) Monitoring of blood vessels and tissues by a population of monocytes with patrolling behavior. Science 317:666–670CrossRefGoogle Scholar
  2. 2.
    Bachert C, Mannent L, Naclerio RM et al (2016) Effect of subcutaneous Dupilumab on nasal polyp burden in patients with chronic sinusitis and nasal polyposis: a randomized clinical trial. JAMA 315:469–479CrossRefGoogle Scholar
  3. 3.
    Beck LA, Thaci D, Hamilton JD et al (2014) Dupilumab treatment in adults with moderate-to-severe atopic dermatitis. N Engl J Med 371:130–139CrossRefGoogle Scholar
  4. 4.
    Bronte V, Brandau S, Chen SH et al (2016) Recommendations for myeloid-derived suppressor cell nomenclature and characterization standards. Nat Commun 7:12150CrossRefGoogle Scholar
  5. 5.
    Coffelt SB, Wellenstein MD, De Visser KE (2016) Neutrophils in cancer: neutral no more. Nat Rev Cancer 16:431–446CrossRefGoogle Scholar
  6. 6.
    Decker WK, Da Silva RF, Sanabria MH et al (2017) Cancer immunotherapy: historical perspective of a clinical revolution and emerging preclinical animal models. Front Immunol 8:829CrossRefGoogle Scholar
  7. 7.
    Dumitru CA, Moses K, Trellakis S et al (2012) Neutrophils and granulocytic myeloid-derived suppressor cells: immunophenotyping, cell biology and clinical relevance in human oncology. Cancer Immunol Immunother 61:1155–1167CrossRefGoogle Scholar
  8. 8.
    Ferris RL, Blumenschein G Jr., Fayette J et al (2016) Nivolumab for recurrent squamous-cell carcinoma of the head and neck. N Engl J Med 375:1856–1867CrossRefGoogle Scholar
  9. 9.
    Ferris RL, Blumenschein G Jr., Fayette J et al (2018) Nivolumab vs investigator’s choice in recurrent or metastatic squamous cell carcinoma of the head and neck: 2‑year long-term survival update of CheckMate 141 with analyses by tumor PD-L1 expression. Oral Oncol 81:45–51CrossRefGoogle Scholar
  10. 10.
    Fuchs TA, Brill A, Duerschmied D et al (2010) Extracellular DNA traps promote thrombosis. Proc Natl Acad Sci USA 107:15880–15885CrossRefGoogle Scholar
  11. 11.
    Korpos E, Wu C, Sorokin L (2009) Multiple roles of the extracellular matrix in inflammation. Curr Pharm Des 15:1349–1357CrossRefGoogle Scholar
  12. 12.
    Laban S, Doescher J, Busch CJ et al (2018) Immunotherapy highlights of the ASCO annual meeting 2018 for head and neck cancers. HNO.  https://doi.org/10.1007/s00106-018-0586-2 CrossRefPubMedGoogle Scholar
  13. 13.
    Lammermann T, Bader BL, Monkley SJ et al (2008) Rapid leukocyte migration by integrin-independent flowing and squeezing. Nature 453:51–55CrossRefGoogle Scholar
  14. 14.
    Lerchenberger M, Uhl B, Stark K et al (2013) Matrix metalloproteinases modulate ameboid-like migration of neutrophils through inflamed interstitial tissue. Blood 122:770–780CrossRefGoogle Scholar
  15. 15.
    Ley K, Laudanna C, Cybulsky MI et al (2007) Getting to the site of inflammation: the leukocyte adhesion cascade updated. Nat Rev Immunol 7:678–689CrossRefGoogle Scholar
  16. 16.
    Medzhitov R (2010) Inflammation 2010: new adventures of an old flame. Cell 140:771–776CrossRefGoogle Scholar
  17. 17.
    Nagarsheth N, Wicha MS, Zou W (2017) Chemokines in the cancer microenvironment and their relevance in cancer immunotherapy. Nat Rev Immunol 17:559–572CrossRefGoogle Scholar
  18. 18.
    Noy R, Pollard JW (2014) Tumor-associated macrophages: from mechanisms to therapy. Immunity 41:49–61CrossRefGoogle Scholar
  19. 19.
    Proebstl D, Voisin MB, Woodfin A et al (2012) Pericytes support neutrophil subendothelial cell crawling and breaching of venular walls in vivo. J Exp Med 209:1219–1234CrossRefGoogle Scholar
  20. 20.
    Reichel CA, Khandoga A, Anders HJ et al (2006) Chemokine receptors Ccr1, Ccr2, and Ccr5 mediate neutrophil migration to postischemic tissue. J Leukoc Biol 79:114–122CrossRefGoogle Scholar
  21. 21.
    Reichel CA, Lerchenberger M, Uhl B et al (2011) Plasmin inhibitors prevent leukocyte accumulation and remodeling events in the postischemic microvasculature. PLoS ONE 6:e17229CrossRefGoogle Scholar
  22. 22.
    Reichel CA, Puhr-Westerheide D, Zuchtriegel G et al (2012) C‑C motif chemokine CCL3 and canonical neutrophil attractants promote neutrophil extravasation through common and distinct mechanisms. Blood 120:880–890CrossRefGoogle Scholar
  23. 23.
    Reichel CA, Rehberg M, Bihari P et al (2008) Gelatinases mediate neutrophil recruitment in vivo: evidence for stimulus specificity and a critical role in collagen IV remodeling. J Leukoc Biol 83:864–874CrossRefGoogle Scholar
  24. 24.
    Reichel CA, Rehberg M, Lerchenberger M et al (2009) Ccl2 and Ccl3 mediate neutrophil recruitment via induction of protein synthesis and generation of lipid mediators. Arterioscler Thromb Vasc Biol 29:1787–1793CrossRefGoogle Scholar
  25. 25.
    Reichel CA, Uhl B, Lerchenberger M et al (2011) Urokinase-type plasminogen activator promotes paracellular transmigration of neutrophils via Mac-1, but independently of urokinase-type plasminogen activator receptor. Circulation 124:1848–1859CrossRefGoogle Scholar
  26. 26.
    Rot A, Von Andrian UH (2004) Chemokines in innate and adaptive host defense: basic chemokinese grammar for immune cells. Annu Rev Immunol 22:891–928CrossRefGoogle Scholar
  27. 27.
    Uhl B, Zuchtriegel G, Puhr-Westerheide D et al (2014) Tissue-type plasminogen activator promotes postischemic neutrophil recruitment via its proteolytic and nonproteolytic properties. Arterioscler Thromb Vasc Biol.  https://doi.org/10.1161/atvbaha.114.303721 CrossRefPubMedGoogle Scholar
  28. 28.
    Ventola CL (2015) The antibiotic resistance crisis: part 1: causes and threats. P T 40:277–283PubMedPubMedCentralGoogle Scholar
  29. 29.
    Von Bruhl ML, Stark K, Steinhart A et al (2012) Monocytes, neutrophils, and platelets cooperate to initiate and propagate venous thrombosis in mice in vivo. J Exp Med 209:819–835CrossRefGoogle Scholar
  30. 30.
    Wang S, Voisin MB, Larbi KY et al (2006) Venular basement membranes contain specific matrix protein low expression regions that act as exit points for emigrating neutrophils. J Exp Med 203:1519–1532CrossRefGoogle Scholar
  31. 31.
    Wenzel S, Ford L, Pearlman D et al (2013) Dupilumab in persistent asthma with elevated eosinophil levels. N Engl J Med 368:2455–2466CrossRefGoogle Scholar
  32. 32.
    Winograd-Katz SE, Fassler R, Geiger B et al (2014) The integrin adhesome: from genes and proteins to human disease. Nat Rev Mol Cell Biol 15:273–288CrossRefGoogle Scholar
  33. 33.
    Zarbock A, Ley K, Mcever RP et al (2011) Leukocyte ligands for endothelial selectins: specialized glycoconjugates that mediate rolling and signaling under flow. Blood 118:6743–6751CrossRefGoogle Scholar
  34. 34.
    Zuchtriegel G, Uhl B, Hessenauer ME et al (2015) Spatiotemporal expression dynamics of selectins govern the sequential extravasation of neutrophils and monocytes in the acute inflammatory response. Arterioscler Thromb Vasc Biol.  https://doi.org/10.1161/atvbaha.114.305143 CrossRefPubMedGoogle Scholar
  35. 35.
    Zuchtriegel G, Uhl B, Puhr-Westerheide D et al (2016) Platelets guide leukocytes to their sites of extravasation. PLoS Biol 14:e1002459CrossRefGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2019

Authors and Affiliations

  1. 1.Klinik und Poliklinik für Hals-Nasen-OhrenheilkundeKlinikum der Universität MünchenMünchenDeutschland

Personalised recommendations