pp 1–6 | Cite as

The speed limit of outer hair cell electromechanical activity

  • J. Santos-SacchiEmail author


The outer hair cell of Corti’s organ provides mechanical feedback into the organ to boost auditory perception. The fidelity of voltage-dependent motility has been estimated to extend beyond 50 kHz, where its force generation is deemed a requirement for sensitive high-frequency mammalian hearing. Recent investigations have shown, however, that the frequency response is substantially more low pass at physiological membrane potentials where the kinetics of prestin impose their speed limit. Nevertheless, it is likely that the reduced magnitude of electromotility is sufficient to drive cochlear amplification at high frequencies.


Organ of Corti Auditory perception Cochlea Membrane potentials Feedback 

Geschwindigkeitsbegrenzung der elektromechanischen Aktivität der äußeren Haarzellen


Von der äußeren Haarzelle des Corti-Organs gibt es zur Verstärkung der Hörwahrnehmung eine mechanische Rückkopplung. Die Genauigkeit der spannungsabhängigen Motilität wurde auf über 50 kHz geschätzt, wobei ihre Krafterzeugung als Voraussetzung für das empfindliche Hochfrequenzhören der Säugetiere angesehen wird. Neuere Untersuchungen haben jedoch gezeigt, dass die Frequenzantwort bei physiologischen Membranpotenzialen, bei denen sich die Geschwindigkeitsgrenze der Kinetik von Prestin auswirkt, wesentlich niedriger ist. Es ist jedoch wahrscheinlich, dass das verringerte Ausmaß der Elektromotilität ausreicht, um die Cochleaverstärkung bei hohen Frequenzen zu steuern.


Corti-Organ Auditorische Wahrnehmung Cochlea Membranpotenziale Rückkopplung 



This work was supported by National Institutes of Health-National Institute on Deafness and Other Communication Disorders Grants R01 DC000273, R01 DC016318, and R01.

Compliance with ethical guidelines

Conflict of interest

J. Santos-Sacchi declares that he has no competing interests.

This article does not contain any studies with human participants or animals performed by any of the authors.


  1. 1.
    Ashmore JF (1987) A fast motile response in guinea-pig outer hair cells: the cellular basis of the cochlear amplifier. J Physiol 388:323–347CrossRefGoogle Scholar
  2. 2.
    Ashmore JF (1990) Forward and reverse transduction in the mammalian cochlea. Neurosci Res Suppl 12:S39–S50CrossRefGoogle Scholar
  3. 3.
    Brownell WE (1984) Microscopic observation of cochlear hair cell motility. Scan Electron Microsc 1984(Pt 3):1401–1406Google Scholar
  4. 4.
    Brownell WE, Bader CR, Bertrand D et al (1985) Evoked mechanical responses of isolated cochlear outer hair cells. Science 227:194–196CrossRefGoogle Scholar
  5. 5.
    Corti A (1851) Recherches sur l’organe de fouie des mammifères. Première partie: Limaçon. Z Wiss Zool 3:109–169Google Scholar
  6. 6.
    Dallos P, Evans BN (1995) High-frequency motility of outer hair cells and the cochlear amplifier. Science 267:2006–2009CrossRefGoogle Scholar
  7. 7.
    Dallos P, Wu X, Cheatham MA et al (2008) Prestin-based outer hair cell motility is necessary for mammalian cochlear amplification. Neuron 58:333–339CrossRefGoogle Scholar
  8. 8.
    Frank G, Hemmert W, Gummer AW (1999) Limiting dynamics of high-frequency electromechanical transduction of outer hair cells. Proc Natl Acad Sci U S A 96:4420–4425CrossRefGoogle Scholar
  9. 9.
    Gale JE, Ashmore JF (1994) Charge displacement induced by rapid stretch in the basolateral membrane of the guinea-pig outer hair cell. Proc R Soc Lond B Biol Sci 255:243–249CrossRefGoogle Scholar
  10. 10.
    Gale JE, Ashmore JF (1997) An intrinsic frequency limit to the cochlear amplifier. Nature 389:63–66CrossRefGoogle Scholar
  11. 11.
    Iwasa KH (1993) Effect of stress on the membrane capacitance of the auditory outer hair cell. Biophys J 65:492–498CrossRefGoogle Scholar
  12. 12.
    Iwasa KH, Kachar B (1989) Fast in vitro movement of outer hair cells in an external electric field: effect of digitonin, a membrane permeabilizing agent. Hear Res 40:247–254CrossRefGoogle Scholar
  13. 13.
    Izumi C, Bird JE, Iwasa KH (2011) Membrane thickness sensitivity of prestin orthologs: the evolution of a piezoelectric protein. Biophys J 100:2614–2622CrossRefGoogle Scholar
  14. 14.
    Kachar B, Brownell WE, Altschuler R et al (1986) Electrokinetic shape changes of cochlear outer hair cells. Nature 322:365–368CrossRefGoogle Scholar
  15. 15.
    Kemp DT (1978) Stimulated acoustic emissions from within the human auditory system. J Acoust Soc Am 64:1386–1391CrossRefGoogle Scholar
  16. 16.
    Meltzer J, Santos-Sacchi J (2001) Temperature dependence of non-linear capacitance in human embryonic kidney cells transfected with prestin, the outer hair cell motor protein. Neurosci Lett 313:141–144CrossRefGoogle Scholar
  17. 17.
    Oliver D, He DZ, Klocker N et al (2001) Intracellular anions as the voltage sensor of prestin, the outer hair cell motor protein. Science 292:2340–2343CrossRefGoogle Scholar
  18. 18.
    Reuter G, Gitter AH, Thurm U et al (1992) High frequency radial movements of the reticular lamina induced by outer hair cell motility. Hear Res 60:236–246CrossRefGoogle Scholar
  19. 19.
    Santos-Sacchi J (1990) Fast outer hair cell motility: how fast is fast? In: Dallos P, Geisler CD, Matthews JW, Ruggero MA, Steele CR (eds) The mechanics and biophysics of hearing. Springer, Berlin, pp 69–75CrossRefGoogle Scholar
  20. 20.
    Santos-Sacchi J (1992) On the frequency limit and phase of outer hair cell motility: effects of the membrane filter. J Neurosci 12:1906–1916CrossRefGoogle Scholar
  21. 21.
    Santos-Sacchi J (1991) Reversible inhibition of voltage-dependent outer hair cell motility and capacitance. J Neurosci 11:3096–3110CrossRefGoogle Scholar
  22. 22.
    Santos-Sacchi J, Dilger JP (1988) Whole cell currents and mechanical responses of isolated outer hair cells. Hear Res 35:143–150CrossRefGoogle Scholar
  23. 23.
    Santos-Sacchi J, Shen W, Zheng J et al (2001) Effects of membrane potential and tension on prestin, the outer hair cell lateral membrane motor protein. J Physiol 531:661–666CrossRefGoogle Scholar
  24. 24.
    Santos-Sacchi J, Song L (2014) Chloride-driven electromechanical phase lags at acoustic frequencies are generated by SLC26a5, the outer hair cell motor protein. Biophys J 107:126–133CrossRefGoogle Scholar
  25. 25.
    Santos-Sacchi J, Song L (2014) Chloride and Salicylate influence Prestin-dependent specific membrane capacitance: support for the area motor model. J Biol Chem 289:10823. CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Santos-Sacchi J, Song L (2016) Chloride anions regulate kinetics but not voltage-sensor Qmax of the solute carrier SLC26a5. Biophys J 110:1–11CrossRefGoogle Scholar
  27. 27.
    Santos-Sacchi J, Song L, Zheng J et al (2006) Control of mammalian cochlear amplification by chloride anions. J Neurosci 26:3992–3998CrossRefGoogle Scholar
  28. 28.
    Santos-Sacchi J, Tan W (2018) The frequency response of outer hair cell voltage-dependent motility is limited by kinetics of prestin. J Neurosci 38:5495–5506CrossRefGoogle Scholar
  29. 29.
    Song L, Santos-Sacchi J (2013) Disparities in voltage-sensor charge and electromotility imply slow chloride-driven state transitions in the solute carrier SLC26a5. Proc Natl Acad Sci U S A 110:3883. CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Spoendlin H (1988) Neural anatomy of the inner ear. In: Jahn AF, Santos-Sacchi J (eds) Physiology of the ear. Raven Press, New YorkGoogle Scholar
  31. 31.
    Zheng J, Shen W, He DZ et al (2000) Prestin is the motor protein of cochlear outer hair cells. Nature 405:149–155CrossRefGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2019

Authors and Affiliations

  1. 1.Surgery (Otolaryngology), Neuroscience, and Cellular and Molecular PhysiologyYale University School of MedicineNew HavenUSA

Personalised recommendations