Advertisement

HNO

, Volume 67, Issue 1, pp 15–26 | Cite as

Immunologie der Polyposis nasi als Grundlage für eine Therapie mit Biologicals

  • L. KlimekEmail author
  • M. Koennecke
  • J. Hagemann
  • B. Wollenberg
  • S. Becker
Übersichten

Zusammenfassung

Hintergrund

Die chronische Rhinosinusitis (CRS) ist eine heterogene und multifaktorielle entzündliche Erkrankung der nasalen und paranasalen Schleimhäute. Bis heute konnte keine international standardisierte einheitliche Klassifikation hierfür entwickelt werden.

Meist wird eine Phänotypklassifikation nach CRS mit (CRScNP) und ohne Polyposis (CRSsNP) vorgenommen. Durch eine Vielzahl von Studien konnte aber gezeigt werden, dass auch innerhalb dieser Phänotypen verschiedene Endotypen der CRS existieren, denen eine unterschiedliche entzündliche Pathophysiologie zugrunde liegt. In diesem Review sollen die wesentlichen immunologischen Vorgänge bei CRScNP dargestellt und hieraus abgeleitete moderne Therapiemöglichkeiten mit Biologika aufgezeigt werden.

Methoden

Das aktuelle Wissen zu den immunologischen und molekularen Prozessen der CRS, speziell der CRScNP, wurde mittels einer strukturierten Literaturanalyse durch Recherchen in Medline, PubMed sowie den nationalen und internationalen Studien- und Leitlinienregistern und der Cochrane Library zusammengestellt.

Ergebnisse

Basierend auf der derzeitigen Literatur wurden die verschiedenen immunologischen Prozesse bei CRS und nasalen Polypen herausgearbeitet. Aktuelle Studien zur Therapie eosinophiler Erkrankungen wie Asthma und Polyposis werden vorgestellt und – falls bereits vorhanden – deren Ergebnisse diskutiert.

Schlussfolgerung

Das Verständnis über die immunologischen Grundlagen der CRScNP kann dazu beitragen, neue personalisierte Therapieansätze mittels Biologika zu entwickeln.

Schlüsselwörter

CRScNP Asthma Sinusitis Entzündung Schleimhaut  

Immunology of chronic rhinosinusitis with nasal polyps as a basis for treatment with biologicals

Abstract

Background

Chronic rhinosinusitis (CRS) is a heterogeneous and multifactorial inflammation of the nasal and paranasal mucosa. Until now, no internationally standardized classification could be developed. In most cases, CRS is phenotypically classified according to chronic rhinosinusitis with (CRScNP) and without nasal polyps (CRSsNP). However, recent studies could show that there are numerous endotypes within these phenotypes based on different inflammatory mechanisms. This review describes the important immunological mechanisms of CRScNP and highlights modern treatment options with biologicals directly addressing particular immunological processes.

Methods

Current knowledge on immunological and molecular processes of CRS, particularly CRScNP, was extracted from Medline, PubMed, national and international study- and guideline-registers, and the Cochrane library by a systematic review of the literature.

Results

Based on current literature, various immunological mechanisms for CRS and CRScNP could be identified. Relevant studies for the treatment of eosinophilic conditions such as asthma or CRScNP are presented and, if available, results of these studies are discussed.

Conclusion

The growing insight into the underlying immunological mechanisms of CRScNP could pave the way for new personalized treatment options such as biologicals in the future.

Keywords

CRScNP Asthma Sinusitis Inflammation Mucous membrane 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

L. Klimek, M. Koennecke, J. Hagemann, B. Wollenberg und S. Becker geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Literatur

  1. 1.
    Fokkens WJ, Lund VJ, Mullol J, Bachert C, Alobid I, Baroody F et al (2012) European position paper on Rhinosinusitis and nasal polyps 2012. Rhinol Suppl 23:3 (preceding table of contents, 1–298)PubMedGoogle Scholar
  2. 2.
    Hastan D, Fokkens WJ, Bachert C, Newson RB, Bislimovska J, Bockelbrink A et al (2011) Chronic rhinosinusitis in Europe – an underestimated disease. A GA(2)LEN study. Allergy 66(9):1216–1223PubMedGoogle Scholar
  3. 3.
    Stuck BA, Beule A, Jobst D, Klimek L, Laudien M, Lell M et al (2018) Guideline for “rhinosinusitis”-long version: S2k guideline of the German College of General Practitioners and Family Physicians and the German Society for Oto-Rhino-Laryngology, Head and Neck Surgery. HNO 66(1):38–74PubMedGoogle Scholar
  4. 4.
    Rosenfeld RM (2007) Clinical practice guideline on adult sinusitis. Otolaryngol Head Neck Surg 137(3):365–377PubMedGoogle Scholar
  5. 5.
    Koennecke M, Klimek L, Mullol J, Gevaert P, Wollenberg B (2018) Subtyping of polyposis nasi: phenotypes, endotypes and comorbidities. Allergo J Int 27(2):56–65PubMedPubMedCentralGoogle Scholar
  6. 6.
    Calus L, Van Zele T, Derycke L, Krysko O, Dutre T, Tomassen P et al (2012) Local inflammation in chronic upper airway disease. Curr Pharm Des 18(16):2336–2346PubMedGoogle Scholar
  7. 7.
    Annunziato F, Romagnani S (2009) Heterogeneity of human effector CD4+ T cells. Arthritis Res Ther 11(6):257PubMedPubMedCentralGoogle Scholar
  8. 8.
    Zygmunt B, Veldhoen M (2011) T helper cell differentiation more than just cytokines. Adv Immunol 109:159–196PubMedGoogle Scholar
  9. 9.
    Kaur D, Brightling C (2012) OX40/OX40 ligand interactions in T‑cell regulation and asthma. Chest 141(2):494–499PubMedPubMedCentralGoogle Scholar
  10. 10.
    Lane P (2000) Role of OX40 signals in coordinating CD4 T cell selection, migration, and cytokine differentiation in T helper (Th)1 and Th2 cells. J Exp Med 191(2):201–206PubMedPubMedCentralGoogle Scholar
  11. 11.
    Plager DA, Kahl JC, Asmann YW, Nilson AE, Pallanch JF, Friedman O et al (2010) Gene transcription changes in asthmatic chronic rhinosinusitis with nasal polyps and comparison to those in atopic dermatitis. PLoS ONE 5(7):e11450PubMedPubMedCentralGoogle Scholar
  12. 12.
    Van Zele T, Claeys S, Gevaert P, Van Maele G, Holtappels G, Van Cauwenberge P et al (2006) Differentiation of chronic sinus diseases by measurement of inflammatory mediators. Allergy 61(11):1280–1289PubMedGoogle Scholar
  13. 13.
    Kopf M, Le Gros G, Bachmann M, Lamers MC, Bluethmann H, Kohler G (1993) Disruption of the murine IL-4 gene blocks Th2 cytokine responses. Nature 362(6417):245–248PubMedGoogle Scholar
  14. 14.
    Ouyang W, Ranganath SH, Weindel K, Bhattacharya D, Murphy TL, Sha WC et al (1998) Inhibition of Th1 development mediated by GATA-3 through an IL-4-independent mechanism. Immunity 9(5):745–755Google Scholar
  15. 15.
    Derycke L, Eyerich S, Van Crombruggen K, Perez-Novo C, Holtappels G, Deruyck N et al (2014) Mixed T helper cell signatures in chronic rhinosinusitis with and without polyps. PLoS ONE 9(6):e97581PubMedPubMedCentralGoogle Scholar
  16. 16.
    Danielsen A, Tynning T, Brokstad KA, Olofsson J, Davidsson A (2006) Interleukin 5, IL6, IL12, IFN-gamma, RANTES and Fractalkine in human nasal polyps, turbinate mucosa and serum. Eur Arch Otorhinolaryngol 263(3):282–289PubMedGoogle Scholar
  17. 17.
    Li Z, Zhang Y, Sun B (2011) Current understanding of Th2 cell differentiation and function. Protein Cell 2(8):604–611PubMedPubMedCentralGoogle Scholar
  18. 18.
    Prussin C, Yin Y, Upadhyaya B (2010) T(H)2 heterogeneity: does function follow form? J Allergy Clin Immunol 126(6):1094–1098PubMedPubMedCentralGoogle Scholar
  19. 19.
    Bachert C, Wagenmann M, Hauser U, Rudack C (1997) IL-5 synthesis is upregulated in human nasal polyp tissue. J Allergy Clin Immunol 99(6 Pt 1):837–842PubMedGoogle Scholar
  20. 20.
    Bachert C, Gevaert P, Holtappels G, Cuvelier C, van Cauwenberge P (2000) Nasal polyposis: from cytokines to growth. Am J Rhinol 14(5):279–290PubMedGoogle Scholar
  21. 21.
    Hurst SM, Wilkinson TS, McLoughlin RM, Jones S, Horiuchi S, Yamamoto N et al (2001) Il-6 and its soluble receptor orchestrate a temporal switch in the pattern of leukocyte recruitment seen during acute inflammation. Immunity 14(6):705–714PubMedGoogle Scholar
  22. 22.
    Jones SA (2005) Directing transition from innate to acquired immunity: defining a role for IL-6. J Immunol 175(6):3463–3468PubMedGoogle Scholar
  23. 23.
    Kaplanski G, Marin V, Montero-Julian F, Mantovani A, Farnarier C (2003) IL-6: a regulator of the transition from neutrophil to monocyte recruitment during inflammation. Trends Immunol 24(1):25–29PubMedGoogle Scholar
  24. 24.
    Peters AT, Kato A, Zhang N, Conley DB, Suh L, Tancowny B et al (2010) Evidence for altered activity of the IL-6 pathway in chronic rhinosinusitis with nasal polyps. J Allergy Clin Immunol 125(2):397–403PubMedPubMedCentralGoogle Scholar
  25. 25.
    Tomassen P, Vandeplas G, Van Zele T, Cardell LO, Arebro J, Olze H et al (2016) Inflammatory endotypes of chronic rhinosinusitis based on cluster analysis of biomarkers. J Allergy Clin Immunol 137(5):1449–1456PubMedGoogle Scholar
  26. 26.
    Keswani A, Chustz RT, Suh L, Carter R, Peters AT, Tan BK et al (2012) Differential expression of interleukin-32 in chronic rhinosinusitis with and without nasal polyps. Allergy 67(1):25–32PubMedGoogle Scholar
  27. 27.
    Cho JS, Kim JA, Park JH, Park IH, Han IH, Lee HM (2016) Toll-like receptor 4‑mediated expression of interleukin-32 via the c‑Jun N‑terminal kinase/protein kinase B/cyclic adenosine monophosphate response element binding protein pathway in chronic rhinosinusitis with nasal polyps. Int Forum Allergy Rhinol 6(10):1020–1028PubMedGoogle Scholar
  28. 28.
    Bai X, Kim SH, Azam T, McGibney MT, Huang H, Dinarello CA et al (2010) IL-32 is a host protective cytokine against Mycobacterium tuberculosis in differentiated THP-1 human macrophages. J Immunol 184(7):3830–3840PubMedGoogle Scholar
  29. 29.
    Dinarello CA, Kim SH (2006) IL-32, a novel cytokine with a possible role in disease. Ann Rheum Dis 65(Suppl 3):iii61–iii64PubMedPubMedCentralGoogle Scholar
  30. 30.
    Kim SH, Han SY, Azam T, Yoon DY, Dinarello CA (2005) Interleukin-32: a cytokine and inducer of TNFalpha. Immunity 22(1):131–142PubMedGoogle Scholar
  31. 31.
    Li W, Sun W, Liu L, Yang F, Li Y, Chen Y et al (2010) IL-32: a host proinflammatory factor against influenza viral replication is upregulated by aberrant epigenetic modifications during influenza A virus infection. J Immunol 185(9):5056–5065PubMedGoogle Scholar
  32. 32.
    Netea MG, Azam T, Lewis EC, Joosten LA, Wang M, Langenberg D et al (2006) Mycobacterium tuberculosis induces interleukin-32 production through a caspase- 1/IL-18/interferon-gamma-dependent mechanism. Plos Med 3(8):e277PubMedPubMedCentralGoogle Scholar
  33. 33.
    Nold MF, Nold-Petry CA, Pott GB, Zepp JA, Saavedra MT, Kim SH et al (2008) Endogenous IL-32 controls cytokine and HIV-1 production. J Immunol 181(1):557–565PubMedGoogle Scholar
  34. 34.
    Calabrese F, Baraldo S, Bazzan E, Lunardi F, Rea F, Maestrelli P et al (2008) IL-32, a novel proinflammatory cytokine in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 178(9):894–901PubMedGoogle Scholar
  35. 35.
    Meyer N, Zimmermann M, Burgler S, Bassin C, Woehrl S, Moritz K et al (2010) IL-32 is expressed by human primary keratinocytes and modulates keratinocyte apoptosis in atopic dermatitis. J Allergy Clin Immunol 125(4):858–865PubMedGoogle Scholar
  36. 36.
    Kang JW, Park YS, Lee DH, Kim MS, Bak Y, Ham SY et al (2014) Interaction network mapping among IL-32 isoforms. Biochimie 101:248–251PubMedGoogle Scholar
  37. 37.
    Chin D, Harvey RJ (2013) Nasal polyposis: an inflammatory condition requiring effective anti-inflammatory treatment. Curr Opin Otolaryngol Head Neck Surg 21(1):23–30PubMedGoogle Scholar
  38. 38.
    Lam EP, Kariyawasam HH, Rana BM, Durham SR, McKenzie AN, Powell N et al (2016) IL-25/IL-33-responsive TH2 cells characterize nasal polyps with a default TH17 signature in nasal mucosa. J Allergy Clin Immunol 137(5):1514–1524PubMedPubMedCentralGoogle Scholar
  39. 39.
    Kato A (2015) Immunopathology of chronic rhinosinusitis. Allergol Int 64(2):121–130PubMedPubMedCentralGoogle Scholar
  40. 40.
    Wang YH, Angkasekwinai P, Lu N, Voo KS, Arima K, Hanabuchi S et al (2007) IL-25 augments type 2 immune responses by enhancing the expansion and functions of TSLP-DC-activated Th2 memory cells. J Exp Med 204(8):1837–1847PubMedPubMedCentralGoogle Scholar
  41. 41.
    Shin HW, Kim DK, Park MH, Eun KM, Lee M, So D et al (2015) IL-25 as a novel therapeutic target in nasal polyps of patients with chronic rhinosinusitis. J Allergy Clin Immunol 135(6):1476–1485PubMedGoogle Scholar
  42. 42.
    Kimura S, Pawankar R, Mori S, Nonaka M, Masuno S, Yagi T et al (2011) Increased expression and role of thymic stromal lymphopoietin in nasal polyposis. Allergy Asthma Immunol Res 3(3):186–193PubMedPubMedCentralGoogle Scholar
  43. 43.
    Liu T, Li TL, Zhao F, Xie C, Liu AM, Chen X et al (2011) Role of thymic stromal lymphopoietin in the pathogenesis of nasal polyposis. Am J Med Sci 341(1):40–47PubMedGoogle Scholar
  44. 44.
    Nagarkar DR, Poposki JA, Tan BK, Comeau MR, Peters AT, Hulse KE et al (2013) Thymic stromal lymphopoietin activity is increased in nasal polyps of patients with chronic rhinosinusitis. J Allergy Clin Immunol 132(3):593–600PubMedPubMedCentralGoogle Scholar
  45. 45.
    Nagarkar DR, Poposki JA, Comeau MR, Biyasheva A, Avila PC, Schleimer RP et al (2012) Airway epithelial cells activate TH2 cytokine production in mast cells through IL-1 and thymic stromal lymphopoietin. J Allergy Clin Immunol 130(1):225–232PubMedPubMedCentralGoogle Scholar
  46. 46.
    Reh DD, Wang Y, Ramanathan M Jr., Lane AP (2010) Treatment-recalcitrant chronic rhinosinusitis with polyps is associated with altered epithelial cell expression of interleukin-33. Am J Rhinol Allergy 24(2):105–109PubMedPubMedCentralGoogle Scholar
  47. 47.
    Kim DK, Jin HR, Eun KM, Mo JH, Cho SH, Oh S et al (2017) The role of interleukin-33 in chronic rhinosinusitis. Thorax 72(7):635–645.  https://doi.org/10.1136/thoraxjnl-2016-208772. Epub 2016 Nov 24PubMedGoogle Scholar
  48. 48.
    Arend WP, Palmer G, Gabay C (2008) IL-1, IL-18, and IL-33 families of cytokines. Immunol Rev 223:20–38PubMedGoogle Scholar
  49. 49.
    Cherry WB, Yoon J, Bartemes KR, Iijima K, Kita H (2008) A novel IL-1 family cytokine, IL-33, potently activates human eosinophils. J Allergy Clin Immunol 121(6):1484–1490PubMedPubMedCentralGoogle Scholar
  50. 50.
    Castano R, Bosse Y, Endam LM, Desrosiers M (2009) Evidence of association of interleukin-1 receptor-like 1 gene polymorphisms with chronic rhinosinusitis. Am J Rhinol Allergy 23(4):377–384PubMedGoogle Scholar
  51. 51.
    Mjosberg JM, Trifari S, Crellin NK, Peters CP, van Drunen CM, Piet B et al (2011) Human IL-25- and IL-33-responsive type 2 innate lymphoid cells are defined by expression of CRTH2 and CD161. Nat Immunol 12(11):1055–1062PubMedGoogle Scholar
  52. 52.
    Robinette ML, Colonna M (2016) Immune modules shared by innate lymphoid cells and T cells. J Allergy Clin Immunol 138(5):1243–1251PubMedPubMedCentralGoogle Scholar
  53. 53.
    Kim HY, Chang YJ, Subramanian S, Lee HH, Albacker LA, Matangkasombut P et al (2012) Innate lymphoid cells responding to IL-33 mediate airway hyperreactivity independently of adaptive immunity. J Allergy Clin Immunol 129(1):216–227PubMedGoogle Scholar
  54. 54.
    Morita H, Moro K, Koyasu S (2016) Innate lymphoid cells in allergic and nonallergic inflammation. J Allergy Clin Immunol 138(5):1253–1264PubMedGoogle Scholar
  55. 55.
    Ho J, Bailey M, Zaunders J, Mrad N, Sacks R, Sewell W et al (2015) Cellular comparison of sinus mucosa vs polyp tissue from a single sinus cavity in chronic rhinosinusitis. Int Forum Allergy Rhinol 5(1):14–27PubMedGoogle Scholar
  56. 56.
    Ho J, Bailey M, Zaunders J, Mrad N, Sacks R, Sewell W et al (2015) Group 2 innate lymphoid cells (ILC2s) are increased in chronic rhinosinusitis with nasal polyps or eosinophilia. Clin Exp Allergy 45(2):394–403PubMedGoogle Scholar
  57. 57.
    Beck LA, Stellato C, Beall LD, Schall TJ, Leopold D, Bickel CA et al (1996) Detection of the chemokine RANTES and endothelial adhesion molecules in nasal polyps. J Allergy Clin Immunol 98(4):766–780PubMedGoogle Scholar
  58. 58.
    Davidsson A, Danielsen A, Viale G, Olofsson J, Dell’Orto P, Pellegrini C et al (1996) Positive identification in situ of mRNA expression of IL-6, and IL-12, and the chemotactic cytokine RANTES in patients with chronic sinusitis and polypoid disease. Clinical relevance and relation to allergy. Acta Otolaryngol 116(4):604–610PubMedGoogle Scholar
  59. 59.
    Allen JS, Eisma R, LaFreniere D, Leonard G, Kreutzer D (1998) Characterization of the eosinophil chemokine RANTES in nasal polyps. Ann Otol Rhinol Laryngol 107(5 Pt 1):416–420PubMedGoogle Scholar
  60. 60.
    Meyer JE, Bartels J, Gorogh T, Sticherling M, Rudack C, Ross DA et al (2005) The role of RANTES in nasal polyposis. Am J Rhinol 19(1):15–20PubMedGoogle Scholar
  61. 61.
    Chen YS, Arab SF, Westhofen M, Lorenzen J (2005) Expression of interleukin-5, interleukin-8, and interleukin-10 mRNA in the osteomeatal complex in nasal polyposis. Am J Rhinol 19(2):117–123PubMedGoogle Scholar
  62. 62.
    Kostamo K, Sorsa T, Leino M, Tervahartiala T, Alenius H, Richardson M et al (2005) In vivo relationship between collagenase-2 and interleukin-8 but not tumour necrosis factor-alpha in chronic rhinosinusitis with nasal polyposis. Allergy 60(10):1275–1279PubMedGoogle Scholar
  63. 63.
    Scavuzzo MC, Fattori B, Ruffoli R, Rocchi V, Carpi A, Berni R et al (2005) Inflammatory mediators and eosinophilia in atopic and non-atopic patients with nasal polyposis. Biomed Pharmacother 59(6):323–329PubMedGoogle Scholar
  64. 64.
    Wang X, Zhang N, Bo M, Holtappels G, Zheng M, Lou H et al (2016) Diversity of TH cytokine profiles in patients with chronic rhinosinusitis: a multicenter study in Europe, Asia, and Oceania. J Allergy Clin Immunol 138(5):1344–1353PubMedGoogle Scholar
  65. 65.
    Poposki JA, Uzzaman A, Nagarkar DR, Chustz RT, Peters AT, Suh LA et al (2011) Increased expression of the chemokine CCL23 in eosinophilic chronic rhinosinusitis with nasal polyps. J Allergy Clin Immunol 128(1):73–81PubMedPubMedCentralGoogle Scholar
  66. 66.
    Bachert C, Van Cauwenberge PB (1997) Inflammatory mechanisms in chronic sinusitis. Acta Otorhinolaryngol Belg 51(4):209–217PubMedGoogle Scholar
  67. 67.
    Fundova P, Funda DP, Kovar D, Holy R, Navara M, Tlaskalova-Hogenova H (2013) Increased expression of chemokine receptors CCR1 and CCR3 in nasal polyps: molecular basis for recruitment of the granulocyte infiltrate. Folia Microbiol (praha) 58(3):219–224Google Scholar
  68. 68.
    Patel VP, Kreider BL, Li Y, Li H, Leung K, Salcedo T et al (1997) Molecular and functional characterization of two novel human C‑C chemokines as inhibitors of two distinct classes of myeloid progenitors. J Exp Med 185(7):1163–1172PubMedPubMedCentralGoogle Scholar
  69. 69.
    Novak H, Muller A, Harrer N, Gunther C, Carballido JM, Woisetschlager M (2007) CCL23 expression is induced by IL-4 in a STAT6-dependent fashion. J Immunol 178(7):4335–4341PubMedGoogle Scholar
  70. 70.
    Peterson S, Poposki JA, Nagarkar DR, Chustz RT, Peters AT, Suh LA et al (2012) Increased expression of CC chemokine ligand 18 in patients with chronic rhinosinusitis with nasal polyps. J Allergy Clin Immunol 129(1):119–127PubMedGoogle Scholar
  71. 71.
    Islam SA, Ling MF, Leung J, Shreffler WG, Luster AD (2013) Identification of human CCR8 as a CCL18 receptor. J Exp Med 210(10):1889–1898PubMedPubMedCentralGoogle Scholar
  72. 72.
    Kato A, Peters A, Suh L, Carter R, Harris KE, Chandra R et al (2008) Evidence of a role for B cell-activating factor of the TNF family in the pathogenesis of chronic rhinosinusitis with nasal polyps. J Allergy Clin Immunol 121(6):1385–1392PubMedPubMedCentralGoogle Scholar
  73. 73.
    Polzehl D, Moeller P, Riechelmann H, Perner S (2006) Distinct features of chronic rhinosinusitis with and without nasal polyps. Allergy 61(11):1275–1279PubMedGoogle Scholar
  74. 74.
    Patadia M, Dixon J, Conley D, Chandra R, Peters A, Suh LA et al (2010) Evaluation of the presence of B‑cell attractant chemokines in chronic rhinosinusitis. Am J Rhinol Allergy 24(1):11–16PubMedPubMedCentralGoogle Scholar
  75. 75.
    Gauvreau GM, O’Byrne PM, Boulet LP, Wang Y, Cockcroft D, Bigler J et al (2014) Effects of an anti-TSLP antibody on allergen-induced asthmatic responses. N Engl J Med 370(22):2102–2110PubMedGoogle Scholar
  76. 76.
    Bel EH, Ortega HG, Pavord ID (2014) Glucocorticoids and mepolizumab in eosinophilic asthma. N Engl J Med 371(25):2434PubMedGoogle Scholar
  77. 77.
    Wenzel S, Ford L, Pearlman D, Spector S, Sher L, Skobieranda F et al (2013) Dupilumab in persistent asthma with elevated eosinophil levels. N Engl J Med 368(26):2455–2466PubMedGoogle Scholar
  78. 78.
    Pauwels B, Jonstam K, Bachert C (2015) Emerging biologics for the treatment of chronic rhinosinusitis. Expert Rev Clin Immunol 11(3):349–361PubMedGoogle Scholar
  79. 79.
    Busse W, Corren J, Lanier BQ, McAlary M, Fowler-Taylor A, Cioppa GD et al (2001) Omalizumab, anti-IgE recombinant humanized monoclonal antibody, for the treatment of severe allergic asthma. J Allergy Clin Immunol 108(2):184–190PubMedGoogle Scholar
  80. 80.
    Bachert C, Zhang L, Gevaert P (2015) Current and future treatment options for adult chronic rhinosinusitis: focus on nasal polyposis. J Allergy Clin Immunol 136(6):1431–1440PubMedGoogle Scholar
  81. 81.
    Bachert C, Zhang N, Holtappels G, De Lobel L, van Cauwenberge P, Liu S et al (2010) Presence of IL-5 protein and IgE antibodies to staphylococcal enterotoxins in nasal polyps is associated with comorbid asthma. J Allergy Clin Immunol 126(5):962–968PubMedGoogle Scholar
  82. 82.
    Lehrer E, Mullol J, Agredo F, Alobid I (2014) Management of chronic rhinosinusitis in asthma patients: is there still a debate? Curr Allergy Asthma Rep 14(6):440PubMedGoogle Scholar
  83. 83.
    Van Zele T, Holtappels G, Gevaert P, Bachert C (2014) Differences in initial immunoprofiles between recurrent and nonrecurrent chronic rhinosinusitis with nasal polyps. Am J Rhinol Allergy 28(3):192–198PubMedGoogle Scholar
  84. 84.
    Grundmann SA, Hemfort PB, Luger TA, Brehler R (2008) Anti-IgE (omalizumab): a new therapeutic approach for chronic rhinosinusitis. J Allergy Clin Immunol 121(1):257–258PubMedGoogle Scholar
  85. 85.
    Holgate ST, Djukanovic R, Casale T, Bousquet J (2005) Anti-immunoglobulin E treatment with omalizumab in allergic diseases: an update on anti-inflammatory activity and clinical efficacy. Clin Exp Allergy 35(4):408–416PubMedGoogle Scholar
  86. 86.
    Pinto JM, Mehta N, DiTineo M, Wang J, Baroody FM, Naclerio RM (2010) A randomized, double-blind, placebo-controlled trial of anti-IgE for chronic rhinosinusitis. Rhinology 48(3):318–324PubMedPubMedCentralGoogle Scholar
  87. 87.
    Vennera MDC, Sabadell C, Picado C, Spanish Omalizumab R (2017) Duration of the efficacy of omalizumab after treatment discontinuation in ‘real life’ severe asthma. Thorax 73(8):782–784.  https://doi.org/10.1136/thoraxjnl-2017-210017. Epub 2017 Oct 27PubMedGoogle Scholar
  88. 88.
    Gevaert P, Calus L, Van Zele T, Blomme K, De Ruyck N, Bauters W et al (2013) Omalizumab is effective in allergic and nonallergic patients with nasal polyps and asthma. J Allergy Clin Immunol 131(1):110–116PubMedGoogle Scholar
  89. 89.
    Felix-Redondo FJ, Fernandez-Berges D, Calderon A, Consuegra-Sanchez L, Lozano L, Barrios V (2012) Prevalence of left-ventricular hypertrophy by multiple electrocardiographic criteria in general population: Hermex study. J Hypertens 30(7):1460–1467PubMedGoogle Scholar
  90. 90.
    Calderon MA, Cox L, Casale TB, Moingeon P, Demoly P (2012) Multiple-allergen and single-allergen immunotherapy strategies in polysensitized patients: looking at the published evidence. J Allergy Clin Immunol 129(4):929–934PubMedGoogle Scholar
  91. 91.
    Valenta R, Laffer S, Vrtala S, Gronlund H, Elfman L, Sperr WR et al (1996) Recombinant allergens. Steps on the way to diagnosis and therapy of type I allergy. Adv Exp Med Biol 409:185–196PubMedGoogle Scholar
  92. 92.
    Gauvreau GM, Arm JP, Boulet LP, Leigh R, Cockcroft DW, Davis BE et al (2016) Efficacy and safety of multiple doses of QGE031 (ligelizumab) versus omalizumab and placebo in inhibiting allergen-induced early asthmatic responses. J Allergy Clin Immunol 138(4):1051–1059PubMedGoogle Scholar
  93. 93.
    Arm JP, Bottoli I, Skerjanec A, Floch D, Groenewegen A, Maahs S et al (2014) Pharmacokinetics, pharmacodynamics and safety of QGE031 (ligelizumab), a novel high-affinity anti-IgE antibody, in atopic subjects. Clin Exp Allergy 44(11):1371–1385PubMedPubMedCentralGoogle Scholar
  94. 94.
    Gauvreau GM, Harris JM, Boulet LP, Scheerens H, Fitzgerald JM, Putnam WS et al (2014) Targeting membrane-expressed IgE B cell receptor with an antibody to the M1 prime epitope reduces IgE production. Sci Transl Med 6(243):243ra85PubMedGoogle Scholar
  95. 95.
    Corrigan CJ, Kettner J, Doemer C, Cromwell O, Narkus A (2005) Efficacy and safety of preseasonal-specific immunotherapy with an aluminium-adsorbed six-grass pollen allergoid. Allergy 60(6):801–807PubMedGoogle Scholar
  96. 96.
    Flood-Page P, Swenson C, Faiferman I, Matthews J, Williams M, Brannick L et al (2007) A study to evaluate safety and efficacy of mepolizumab in patients with moderate persistent asthma. Am J Respir Crit Care Med 176(11):1062–1071PubMedGoogle Scholar
  97. 97.
    Flood-Page PT, Menzies-Gow AN, Kay AB, Robinson DS (2003) Eosinophil’s role remains uncertain as anti-interleukin-5 only partially depletes numbers in asthmatic airway. Am J Respir Crit Care Med 167(2):199–204PubMedGoogle Scholar
  98. 98.
    Bel EH, Wenzel SE, Thompson PJ, Prazma CM, Keene ON, Yancey SW et al (2014) Oral glucocorticoid-sparing effect of mepolizumab in eosinophilic asthma. N Engl J Med 371(13):1189–1197PubMedGoogle Scholar
  99. 99.
    Gevaert P, Lang-Loidolt D, Lackner A, Stammberger H, Staudinger H, Van Zele T et al (2006) Nasal IL-5 levels determine the response to anti-IL-5 treatment in patients with nasal polyps. J Allergy Clin Immunol 118(5):1133–1141PubMedGoogle Scholar
  100. 100.
    Gevaert P, Van Bruaene N, Cattaert T, Van Steen K, Van Zele T, Acke F et al (2011) Mepolizumab, a humanized anti-IL-5 mAb, as a treatment option for severe nasal polyposis. J Allergy Clin Immunol 128(5):989–995PubMedGoogle Scholar
  101. 101.
    Mepolizumab in Nasal Polyposis. https://clinicaltrials.gov/ct2/show/NCT01362244.
  102. 102.
    Effect of Mepolizumab in Severe Bilateral Nasal Polyps. https://clinicaltrials.gov/ct2/show/NCT03085797.
  103. 103.
    Castro M, Zangrilli J, Wechsler ME, Bateman ED, Brusselle GG, Bardin P et al (2015) Reslizumab for inadequately controlled asthma with elevated blood eosinophil counts: results from two multicentre, parallel, double-blind, randomised, placebo-controlled, phase 3 trials. Lancet Respir Med 3(5):355–366PubMedGoogle Scholar
  104. 104.
    Castro M, Mathur S, Hargreave F, Boulet LP, Xie F, Young J et al (2011) Reslizumab for poorly controlled, eosinophilic asthma: a randomized, placebo-controlled study. Am J Respir Crit Care Med 184(10):1125–1132PubMedGoogle Scholar
  105. 105.
    Study of Chronic Rhinosinusitis Symptoms in Asthma Patients Undergoing Treatment With Reslizumab. https://clinicaltrials.gov/ct2/show/NCT03369574.
  106. 106.
    Kolbeck R, Kozhich A, Koike M, Peng L, Andersson CK, Damschroder MM et al (2010) MEDI-563, a humanized anti-IL-5 receptor alpha mAb with enhanced antibody-dependent cell-mediated cytotoxicity function. J Allergy Clin Immunol 125(6):1344–1353PubMedGoogle Scholar
  107. 107.
    Berair R, Pavord ID (2013) Rationale and clinical results of inhibiting interleukin-5 for the treatment of severe asthma. Curr Allergy Asthma Rep 13(5):469–476PubMedGoogle Scholar
  108. 108.
    Laviolette M, Gossage DL, Gauvreau G, Leigh R, Olivenstein R, Katial R et al (2013) Effects of benralizumab on airway eosinophils in asthmatic patients with sputum eosinophilia. J Allergy Clin Immunol 132(5):1086–1096PubMedPubMedCentralGoogle Scholar
  109. 109.
    Mahdavinia M, Carter RG, Ocampo CJ, Stevens W, Kato A, Tan BK et al (2014) Basophils are elevated in nasal polyps of patients with chronic rhinosinusitis without aspirin sensitivity. J Allergy Clin Immunol 133(6):1759–1763PubMedPubMedCentralGoogle Scholar
  110. 110.
    Efficacy and Safety Study of Benralizumab for Patients With Severe Nasal Polyposis (OSTRO). https://clinicaltrials.gov/ct2/show/NCT03401229.
  111. 111.
    Corren J, Lemanske RF, Hanania NA, Korenblat PE, Parsey MV, Arron JR et al (2011) Lebrikizumab treatment in adults with asthma. N Engl J Med 365(12):1088–1098PubMedGoogle Scholar
  112. 112.
    De Boever EH, Ashman C, Cahn AP, Locantore NW, Overend P, Pouliquen IJ et al (2014) Efficacy and safety of an anti-IL-13 mAb in patients with severe asthma: a randomized trial. J Allergy Clin Immunol 133(4):989–996PubMedGoogle Scholar
  113. 113.
    Noonan M, Korenblat P, Mosesova S, Scheerens H, Arron JR, Zheng Y et al (2013) Dose-ranging study of lebrikizumab in asthmatic patients not receiving inhaled steroids. J Allergy Clin Immunol 132(3):567–574PubMedGoogle Scholar
  114. 114.
    Oh CK, Geba GP, Molfino N (2010) Investigational therapeutics targeting the IL-4/IL-13/STAT-6 pathway for the treatment of asthma. Eur Respir Rev 19(115):46–54PubMedGoogle Scholar
  115. 115.
    Scheerens H, Arron JR, Zheng Y, Putnam WS, Erickson RW, Choy DF et al (2014) The effects of lebrikizumab in patients with mild asthma following whole lung allergen challenge. Clin Exp Allergy 44(1):38–46PubMedGoogle Scholar
  116. 116.
    Novembre E, Galli E, Landi F, Caffarelli C, Pifferi M, De Marco E et al (2004) Coseasonal sublingual immunotherapy reduces the development of asthma in children with allergic rhinoconjunctivitis. J Allergy Clin Immunol 114(4):851–857PubMedGoogle Scholar
  117. 117.
    Choy DF, Hart KM, Borthwick LA, Shikotra A, Nagarkar DR, Siddiqui S et al (2015) TH2 and TH17 inflammatory pathways are reciprocally regulated in asthma. Sci Transl Med 7(301):301ra129PubMedGoogle Scholar
  118. 118.
    Corren J, Busse W, Meltzer EO, Mansfield L, Bensch G, Fahrenholz J et al (2010) A randomized, controlled, phase 2 study of AMG 317, an IL-4Ralpha antagonist, in patients with asthma. Am J Respir Crit Care Med 181(8):788–796PubMedGoogle Scholar
  119. 119.
    Wenzel S, Wilbraham D, Fuller R, Getz EB, Longphre M (2007) Effect of an interleukin-4 variant on late phase asthmatic response to allergen challenge in asthmatic patients: results of two phase 2a studies. Lancet 370(9596):1422–1431PubMedGoogle Scholar
  120. 120.
    Wenzel S, Castro M, Corren J, Maspero J, Wang L, Zhang B et al (2016) Dupilumab efficacy and safety in adults with uncontrolled persistent asthma despite use of medium-to-high-dose inhaled corticosteroids plus a long-acting beta2 agonist: a randomised double-blind placebo-controlled pivotal phase 2b dose-ranging trial. Lancet 388(10039):31–44PubMedGoogle Scholar
  121. 121.
    Wenzel SE, Wang L, Pirozzi G (2013) Dupilumab in persistent asthma. N Engl J Med 369(13):1276PubMedGoogle Scholar
  122. 122.
    Wechsler ME (2013) Inhibiting interleukin-4 and interleukin-13 in difficult-to-control asthma. N Engl J Med 368(26):2511–2513PubMedGoogle Scholar
  123. 123.
    Bachert C, Mannent L, Naclerio RM, Mullol J, Ferguson BJ, Gevaert P et al (2016) Effect of subcutaneous Dupilumab on nasal polyp burden in patients with chronic sinusitis and nasal Polyposis: a randomized clinical trial. JAMA 315(5):469–479PubMedGoogle Scholar
  124. 124.
    Barajas-Espinosa A, Ochoa-Cortes F, Moos MP, Ramirez FD, Vanner SJ, Funk CD (2011) Characterization of the cysteinyl leukotriene 2 receptor in novel expression sites of the gastrointestinal tract. Am J Pathol 178(6):2682–2689PubMedPubMedCentralGoogle Scholar
  125. 125.
    Stock C, Moosbauer D, Zugmann S, Simbeck T, Amereller M, Gores HJ (2011) A novel method for in situ measurement of solubility via impedance scanning quartz crystal microbalance studies. Chem Commun (camb) 47(24):6984–6986Google Scholar
  126. 126.
    Gauvreau GM, Boulet LP, Cockcroft DW, FitzGerald JM, Mayers I, Carlsten C et al (2014) OX40L blockade and allergen-induced airway responses in subjects with mild asthma. Clin Exp Allergy 44(1):29–37PubMedGoogle Scholar
  127. 127.
    Pfaar O, Mosges R, Hormann K, Klimek L (2009) Cluster immunotherapy of persistent allergic rhinoconjunctivitis. Safety aspects of induction therapy with mite depot allergen preparations. HNO 57(11):1099–1105PubMedGoogle Scholar
  128. 128.
    Klimek L, Pfaar O, Grevers G (2009) Therapeutical options in allergic rhinitis. MMW Fortschr Med 151(9):31–34PubMedGoogle Scholar
  129. 129.
    Pfaar O, Anders C, Klimek L (2009) Clinical outcome measures of specific immunotherapy. Curr Opin Allergy Clin Immunol 9(3):208–213PubMedGoogle Scholar
  130. 130.
    Pfaar O, Klimek L, Fischer I, Sieber J, Amoroso S, Moreno Aguilar C et al (2009) Safety of two cluster schedules for subcutaneous immunotherapy in allergic rhinitis or asthma patients sensitized to inhalant allergens. Int Arch Allergy Immunol 150(1):102–108PubMedGoogle Scholar
  131. 131.
    Pfaar O, Raap U, Holz M, Hormann K, Klimek L (2009) Pathophysiology of itching and sneezing in allergic rhinitis. Swiss Med Wkly 139(3–4):35–40PubMedGoogle Scholar
  132. 132.
    Kiwamoto T, Kawasaki N, Paulson JC, Bochner BS (2012) Siglec-8 as a drugable target to treat eosinophil and mast cell-associated conditions. Pharmacol Ther 135(3):327–336PubMedPubMedCentralGoogle Scholar
  133. 133.
    Nutku E, Aizawa H, Hudson SA, Bochner BS (2003) Ligation of Siglec-8: a selective mechanism for induction of human eosinophil apoptosis. Blood 101(12):5014–5020PubMedGoogle Scholar
  134. 134.
    Na HJ, Hudson SA, Bochner BS (2012) IL-33 enhances Siglec-8 mediated apoptosis of human eosinophils. Cytokine 57(1):169–174PubMedGoogle Scholar
  135. 135.
    Nutku E, Hudson SA, Bochner BS (2005) Mechanism of Siglec-8-induced human eosinophil apoptosis: role of caspases and mitochondrial injury. Biochem Biophys Res Commun 336(3):918–924PubMedGoogle Scholar
  136. 136.
    Wenzel SE, Barnes PJ, Bleecker ER, Bousquet J, Busse W, Dahlen SE et al (2009) A randomized, double-blind, placebo-controlled study of tumor necrosis factor-alpha blockade in severe persistent asthma. Am J Respir Crit Care Med 179(7):549–558PubMedGoogle Scholar
  137. 137.
    Brightling C, Berry M, Amrani Y (2008) Targeting TNF-alpha: a novel therapeutic approach for asthma. J Allergy Clin Immunol 121(1):5–10 (quiz 1–2)PubMedGoogle Scholar
  138. 138.
    Busse WW, Israel E, Nelson HS, Baker JW, Charous BL, Young DY et al (2008) Daclizumab improves asthma control in patients with moderate to severe persistent asthma: a randomized, controlled trial. Am J Respir Crit Care Med 178(10):1002–1008PubMedGoogle Scholar
  139. 139.
    De Greve G, Hellings PW, Fokkens WJ, Pugin B, Steelant B, Seys SF (2017) Endotype-driven treatment in chronic upper airway diseases. Clin Transl Allergy 7:22PubMedPubMedCentralGoogle Scholar
  140. 140.
    Bachert C, Gevaert P, Hellings P (2017) Biotherapeutics in chronic Rhinosinusitis with and without nasal polyps. J Allergy Clin Immunol Pract 5(6):1512–1516.  https://doi.org/10.1016/j.jaip.2017.04.024. Epub 2017 May 16PubMedGoogle Scholar
  141. 141.
    Kim DW, Cho SH (2017) Emerging Endotypes of chronic Rhinosinusitis and its application to precision medicine. Allergy Asthma Immunol Res 9(4):299–306PubMedPubMedCentralGoogle Scholar
  142. 142.
    Klimek L, Bergmann KC, Biedermann T, Bousquet J, Hellings P, Jung K et al (2017) Visual analogue scales (VAS): Measuring instruments for the documentation of symptoms and therapy monitoring in cases of allergic rhinitis in everyday health care. Allergo J Int 26(1:16–24 (Position Paper of the German Society of Allergology (AeDA) and the German Society of Allergy and Clinical Immunology (DGAKI), ENT Section, in collaboration with the working group on Clinical Immunology, Allergology and Environmental Medicine of the German Society of Otorhinolaryngology, Head and Neck Surgery (DGHNOKHC))Google Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2018

Authors and Affiliations

  • L. Klimek
    • 1
    Email author
  • M. Koennecke
    • 2
  • J. Hagemann
    • 3
  • B. Wollenberg
    • 2
  • S. Becker
    • 3
  1. 1.Zentrum für Rhinologie und AllergologieWiesbadenDeutschland
  2. 2.Klinik für Hals‑, Nasen- und OhrenheilkundeUniversitätsklinikum Schleswig-Holstein, Campus LübeckLübeckDeutschland
  3. 3.Hals‑, Nasen‑, Ohrenklinik und PoliklinikUniversitätsmedizin MainzMainzDeutschland

Personalised recommendations