Advertisement

HNO

, Volume 65, Issue 2, pp 107–116 | Cite as

Akustische Informationen von Schnarchgeräuschen

  • C. Janott
  • B. Schuller
  • C. Heiser
Leitthema

Zusammenfassung

Hintergrund

Mehr als ein Drittel aller Menschen schnarchen regelmäßig. Schnarchen ist ein häufiges Begleitsymptom einer obstruktiven Schlafapnoe (OSA) und wirkt zusätzlich störend auf den Bettpartner.

Ziel der Arbeit

Diese Arbeit gibt eine Übersicht über die Historie und den Stand der Forschung hinsichtlich der akustischen Analyse des Schnarchens zur Klassifizierung des OSA-Schweregrads, zur Detektion obstruktiver Ereignisse, zur Messung der Lästigkeit und zur Identifikation des Schallentstehungsorts.

Material und Methoden

Mit Blick auf die genannten Zielsetzungen wurden Recherchen in den Literaturdatenbanken PubMed und IEEE Xplore durchgeführt und aus den Suchergebnissen diejenigen Publikationen ausgewählt, die sich laut Titel und Abstract mit der jeweiligen Zielstellung befassen.

Ergebnisse

Es wurden insgesamt 48 Publikationen zu den genannten Zielstellungen berücksichtigt. Limitierender Faktor vieler Arbeiten ist die geringe Anzahl der Probanden, auf denen die Untersuchungen basieren.

Schlussfolgerung

Jüngere Forschungsergebnisse zeigen vielversprechende Ergebnisse, sodass akustische Analysen in der Zukunft einen Platz im Rahmen der Schlafdiagnostik als Ergänzung der anerkannten Standardverfahren finden können.

Schlüsselwörter

Schnarchen Atmungsstörungen Atemgeräusche Maschinelles Lernen Obstruktive Schlafapnoe 

Acoustic information in snoring noises

Abstract

Background

More than one third of all people snore regularly. Snoring is a common accompaniment of obstructive sleep apnea (OSA) and is often disruptive for the bed partner.

Objective

This work gives an overview of the history of and state of research on acoustic analysis of snoring for classification of OSA severity, detection of obstructive events, measurement of annoyance, and identification of the sound excitation location.

Materials and methods

Based on these objectives, searches were conducted in the literature databases PubMed and IEEE Xplore. Publications dealing with the respective objectives according to title and abstract were selected from the search results.

Results

A total of 48 publications concerning the above objectives were considered. The limiting factor of many studies is the small number of subjects upon which the analyses are based.

Conclusion

Recent research findings show promising results, such that acoustic analysis may find a place in the framework of sleep diagnostics, thus supplementing the recognized standard methods.

Keywords

Snoring Respiration disorders Respiratory sounds Machine Learning Obstructive sleep apnea 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

C. Janott ist der Erfinder eines patentierten Verfahrens und Systems zur Ermittlung anatomischer Ursachen für die Entstehung von Schnarchgeräuschen (DE102012219128B4). B. Schuller und C. Heiser geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Literatur

  1. 1.
    Young T, Palta M, Dempsey J, Skatrud J, Weber S, Badr S (1993) The occurrence of sleep-disordered breathing among middle-aged adults. N Engl J Med 328:1230–1235CrossRefPubMedGoogle Scholar
  2. 2.
    Aldrich M (1999) Sleep medicine. Oxford University Press, New York/OxfordGoogle Scholar
  3. 3.
    Blumen M, Quera M, Vaugier I, Leroux K, d’Ortho M, Barbot F, Chabolle F, Lofaso F (2012) Snoring intensity responsible for the sleep partner’s poor quality of sleep? Sleep Breath 16:903–907CrossRefPubMedGoogle Scholar
  4. 4.
    Stuck B, Dreher A, Heiser C, Herzog M, Kühnel T, Maurer J, Pistner H, Sitter H, Steffen A, Verse T (2013) Sk2 guidelines diagnosis and therapy of snoring in adults compiled by the sleep medicine working group of the German Society of Otorhinolaryngology, Head and Neck Surgery. HNO 61:944–957. doi: 10.1007/s00106-013-2775-3 CrossRefPubMedGoogle Scholar
  5. 5.
    Pevernagie D, Aarts R, De Meyer M (2010) The acoustics of snoring. Sleep Med Rev 14:131–144CrossRefPubMedGoogle Scholar
  6. 6.
    Pschyrembel W (2007) Klinisches WörterbuchGoogle Scholar
  7. 7.
    Norman M, Middleton S, Erskine O, Middleton P, Wheatley J, Sullivan C (2014) Validation of the Sonomat: a contactless monitoring system used for the diagnosis of sleep disordered breathing. Sleep 37(9):1477–1487. doi: 10.5665/sleep.3996.PubMedPubMedCentralGoogle Scholar
  8. 8.
    Rohrmeier C, Herzog M, Ettl T, Kuehnel T (2014) Distinguishing snoring sounds from breath sounds: a straightforward matter? Sleep Breath 18:169–176CrossRefPubMedGoogle Scholar
  9. 9.
    Dafna E, Tarasiuk A, Zigel Y (2013) Automatic detection of whole night snoring events using non-contact microphone. PLOS ONE 8:e84139CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Rousselot A (1904) Principes de Phonétique expérimentale Bd. 2. Didier, ParisGoogle Scholar
  11. 11.
    Sullivan C, Issa F, Berthon-Jones M, Eves L (1981) Reversal of obstructive sleep apnoea by continuous positive airway pressure applied through the nares. Lancet 317:862–865CrossRefGoogle Scholar
  12. 12.
    Cohen A, Lieberman A (1986) Analysis and classification of snoring signals. Acoustics, Speech, and Signal Processing. IEEE International Conference on ICASSP, S 693–696Google Scholar
  13. 13.
    Schäfer J (1989) How can one recognize a velum snorer? Laryngorhinootologie 68:290–294CrossRefPubMedGoogle Scholar
  14. 14.
    Janott C, Pirsig W, Heiser C (2014) Akustische Analyse von Schnarchgeräuschen. Somnologie 18:87–95CrossRefGoogle Scholar
  15. 15.
    American Academy of Sleep Medicine (1999) Sleep-related breathing disorders in adults: recommendations for syndrome definition and measurement techniques in clinical research. The Report of an American Academy of Sleep Medicine Task Force. Sleep 22(5):667–689Google Scholar
  16. 16.
    Bishop M (2006) Pattern Recognition and Machine Learning. Springer, HeidelbergGoogle Scholar
  17. 17.
    Basheer I, Hajmeer M (2000) Artificial neural networks: fundamentals, computing, design, and application. J Microbiol Methods 43:3–31CrossRefPubMedGoogle Scholar
  18. 18.
    Vapnik V (2013) The Nature of Statistical Learning Theory. Springer Science, New YorkGoogle Scholar
  19. 19.
    Sola-Soler J, Jane R, Fiz J, Morera J (2000) Towards automatic pitch detection in snoring signals. Engineering in Medicine and Biology Society. Proceedings of the 22nd Annual International Conference of the IEEE, S 2974–2976Google Scholar
  20. 20.
    Jane R, Sola-Soler J, Fiz J, Morera J (2000) Automatic detection of snoring signals: validation with simple snorers and OSAS patients. Engineering in Medicine and Biology Society. Proceedings of the 22nd Annual International Conference of the IEEE, S 3129–3131Google Scholar
  21. 21.
    Sola-Soler J, Jane R, Fiz J, Morera J (2003) Spectral envelope analysis in snoring signals from simple snorers and patients with Obstructive Sleep Apnea. Engineering in Medicine and Biology Society. Proceedings of the 25th Annual International Conference of the IEEE, S 2527–2530Google Scholar
  22. 22.
    Abeyratne U, Patabandi C, Puvanendran K (2001) Pitch-jitter analysis of snoring sounds for the diagnosis of sleep apnea. Engineering in Medicine and Biology Society. Proceedings of the 23rd Annual International Conference of the IEEE, S 2072–2075Google Scholar
  23. 23.
    Wakwella A, Abeyratne U, Hukins C (2004) Snore based systems for the diagnosis of apnoea: a novel feature and its receiver operating characteristics for a full-night clinical database. IEEE International Works on Biomedical Circuits and Systems, S S2/3–S5–8Google Scholar
  24. 24.
    Sola-Soler J, Jane R, Fiz J, Morera J (2005) Variability of snore parameters in time and frequency domains in snoring subjects with and without Obstructive Sleep Apnea. IEEE Engineering in Medicine and Biology 27th Annual Conference, S 2583–2586Google Scholar
  25. 25.
    Ng A, Koh T, Baey E, Puvanendran K (2006) Speech-like Analysis of Snore Signals for the Detection of Obstructive Sleep Apnea. International Conference on Biomedical and Pharmaceutical Engineering, S 99–103Google Scholar
  26. 26.
    Sola-Soler J, Jane R, Fiz J, Morera J (2007) Automatic classification of subjects with and without Sleep Apnea through snoring analysis. 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, S 6093–6096Google Scholar
  27. 27.
    Karunajeewa A, Abeyratne U, Hukins C (2011) Multi-feature snore sound analysis in obstructive sleep apnea-hypopnea syndrome. Physiol Meas 32:83–97CrossRefPubMedGoogle Scholar
  28. 28.
    Matsiki D, Deligianni X, Vlachogianni-Daskalopoulou E, Hadjileontiadis L (2007) Wavelet-based Analysis of Nocturnal Snoring in Apneic Patients Undergoing Polysomnography. 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, S 1912–1915Google Scholar
  29. 29.
    Tagluk M, Akin M, Sezgin N (2009) Time-frequency analysis of snoring sounds in patients with simple snoring and OSAS. IEEE 17th Signal Processing and Communications Applications Conference, S 293–296Google Scholar
  30. 30.
    Alshaer H, Rudzicz F, Falk T, Tseng W, Bradley T (2013) Classification of vibratory patterns of the upper airway during sleep. 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), S 2080–2083Google Scholar
  31. 31.
    Kizilkaya M, Ari F, Demi̇rgünes D (2013) Detection of sleep apnea with chaotic sound features. Signal Processing and Communications Applications Conference (SIU), S 1–4Google Scholar
  32. 32.
    Nakano H, Hirayama K, Sadamitsu Y, Toshimitsu A, Fujita H, Shin S, Tanigawa T (2014) Monitoring sound to quantify snoring and sleep apnea severity using a smartphone: proof of concept. J Clin Sleep Med 10(1):73–78. doi: 10.5664/jcsm.3364 PubMedPubMedCentralGoogle Scholar
  33. 33.
    Ng A, Koh T (2008) Using psychoacoustics of snoring sounds to screen for obstructive sleep apnea. 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, S 1647–1650Google Scholar
  34. 34.
    Karci E, Dogrusoz Y, Ciloglu T (2011) Detection of post apnea sounds and apnea periods from sleep sounds. Annual International Conference of the IEEE Engineering in Medicine and Biology Society, S 6075–6078Google Scholar
  35. 35.
    Ng A, Koh T, Baey E, Lee T, Abeyratne U, Puvanendran K (2008) Could formant frequencies of snore signals be an alternative means for the diagnosis of obstructive sleep apnea? Sleep Med 9:894–898CrossRefPubMedGoogle Scholar
  36. 36.
    Sola-Soler J, Jane R, Fiz J, Morera J (2008) Formant frequencies of normal breath sounds of snorers may indicate the risk of Obstructive Sleep Apnea Syndrome. 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, S 3500–3503Google Scholar
  37. 37.
    Herath D, Abeyratne U, Hukins C (2015) Hidden Markov modelling of intra-snore episode behavior of acoustic characteristics of obstructive sleep apnea patients. Physiol Meas 36:2379–2404CrossRefPubMedGoogle Scholar
  38. 38.
    Ben-Israel N, Tarasiuk A, Zigel Y (2012) Obstructive apnea hypopnea index estimation by analysis of nocturnal snoring signals in adults. Sleep 35(9):1299–1305. doi: 10.5665/sleep.2092 PubMedPubMedCentralGoogle Scholar
  39. 39.
    Fiz J, Jané R, Solà-Soler J, Abad J, García M, Morera J (2010) Continuous analysis and monitoring of snores and their relationship to the apnea-hypopnea index. Laryngoscope 120:854–862CrossRefPubMedGoogle Scholar
  40. 40.
    de Silva S, Abeyratne U, Hukins C (2012) Gender dependant snore sound based multi feature obstructive sleep apnea screening method. Conf Proc IEEE Eng Med Biol Soc, S 6353–6356Google Scholar
  41. 41.
    de Silva S, Abeyratne U, Hukins C (2012) Impact of gender on snore-based obstructive sleep apnea screening. Physiol Meas 33:587–601CrossRefPubMedGoogle Scholar
  42. 42.
    Abeyratne U, de Silva S, Hukins C, Duce B (2013) Obstructive sleep apnea screening by integrating snore feature classes. Physiol Meas 34:99–121CrossRefPubMedGoogle Scholar
  43. 43.
    Perez-Padilla J, Slawinski E, Difrancesco L, Feige R, Remmers J, Whitelaw W (1993) Characteristics of the snoring noise in patients with and without occlusive sleep apnea. Am Rev Respir Dis 147:635–644CrossRefPubMedGoogle Scholar
  44. 44.
    Yang Y, Qin Y, Haung W, Peng H, Xu H (2012) Acoustic characteristics of snoring sound in patients with obstructive sleep apnea hypopnea syndrome. Lin Chung Er Bi Yan Hou Tou Jing Wai Ke Za Zhi 26(8):360–363PubMedGoogle Scholar
  45. 45.
    Yadollahi A, Giannouli E, Moussavi Z (2010) Sleep apnea monitoring and diagnosis based on pulse oximetry and tracheal sound signals. Med Biol Eng Comput 48:1087–1097CrossRefPubMedGoogle Scholar
  46. 46.
    Hoffstein V, Mateika S, Anderson D (1994) Snoring: is it in the ear of the beholder? Sleep 17(6):522–526PubMedGoogle Scholar
  47. 47.
    Caffier P, Berl J, Muaggli A, Reinhardt A, Jakob A, Möser M, Fietze I, Scherer H, Hölzl M (2007) Snoring noise pollution-the need for objective quantification of annoyance, regulatory guidelines and mandatory therapy for snoring. Physiol Meas 28:25–40CrossRefPubMedGoogle Scholar
  48. 48.
    Rohrmeier C, Herzog M, Haubner F, Kuehnel T (2012) The annoyance of snoring and psychoacoustic parameters: a step towards an objective measurement. Eur Arch Otorhinolaryngol 269:1537–1543CrossRefPubMedGoogle Scholar
  49. 49.
    Fastl H (2005) Psycho-Acoustics and Sound Quality. Communication Acoustics, S 139–162Google Scholar
  50. 50.
    Fischer R, Kuehnel T, Merz A, Ettl T, Herzog M, Rohrmeier C (2016) Calculating annoyance: an option to proof efficacy in ENT treatment of snoring? Eur Arch Otorhinolaryngol 273:4607–4613CrossRefPubMedGoogle Scholar
  51. 51.
    Quinn S, Huang L, Ellis P, Williams J (1996) The differentiation of snoring mechanisms using sound analysis. Clin Otolaryngol Allied Sci 21:119–123CrossRefPubMedGoogle Scholar
  52. 52.
    Hill P, Lee B, Osborne J, Osman E (1999) Palatal snoring identified by acoustic crest factor analysis. Physiol Meas 20:167–174CrossRefPubMedGoogle Scholar
  53. 53.
    Beeton R, Wells, Ebden P, Whittet H, Clarke J (2007) Snore site discrimination using statistical moments of free field snoring sounds recorded during sleep nasendoscopy. Physiol Meas 28:1225–1236CrossRefPubMedGoogle Scholar
  54. 54.
    Herzog M, Plößl S, Glien A, Herzog B, Rohrmeier C, Kühnel T, Plontke S, Kellner P (2015) Evaluation of acoustic characteristics of snoring sounds obtained during drug-induced sleep endoscopy. Sleep Breath 19:1011–1019CrossRefPubMedGoogle Scholar
  55. 55.
    Qian K, Janott C, Zhang Z, Heiser C, Schuller B (2016) Wavelet features for classification of VOTE snore sounds. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), S 221–225Google Scholar
  56. 56.
    Kezirian E, Hohenhorst W, de Vries N (2011) Drug-induced sleep endoscopy: the vote classification. Eur Arch Otorhinolaryngol 268:1233–1236CrossRefPubMedGoogle Scholar
  57. 57.
    Schmitt M, Janott C, Pandit V, Qian K, Heiser C, Hemmert W, Schuller B (2016) A Bag-of-AudioWords Approach for Snore Sounds’ Excitation Localisation. Proceedings 14. ITG Conference on Speech Communication, IEEE, S 1–5Google Scholar
  58. 58.
    Hess W (1983) Pitch Determination of Speech Signals. Springer, Berlin HeidelbergCrossRefGoogle Scholar

Copyright information

© Springer Medizin Verlag Berlin 2017

Authors and Affiliations

  1. 1.Zentralinstitut für Medizintechnik (IMETUM)Technische Universität MünchenGarchingDeutschland
  2. 2.Lehrstuhl für Complex and Intelligent SystemsUniversität PassauPassauDeutschland
  3. 3.Hals-Nasen-Ohrenklinik und Poliklinik, Klinikum rechts der IsarTechnische Universität MünchenMünchenDeutschland

Personalised recommendations