HNO

, Volume 61, Issue 3, pp 197–201 | Cite as

Nanomedizin

Innovative Anwendungen in der Medizin
Leitthema

Zusammenfassung

Die Nanomedizin ist ein neuer und aufstrebender Bereich in der Medizin. Superparamagnetische Eisenoxidnanopartikel (SPION) verdienen besondere Beachtung, da sie sowohl in der Diagnostik als auch in der Therapie von Erkrankungen verwendet werden können. Man kann sie deshalb auch als „Theranostika“ bezeichnen. Diagnostisch sind sie in vivo bereits als Kontrastmittel bei der Magnetresonanztomographie und in vitro bei der Zellseparation im Einsatz. In der Therapie stellt das Magnetische Drug Targeting (MDT) einen besonders zukunftsträchtigen Ansatz dar. Es ermöglicht die zielgerichtete lokale Applikation von Wirkstoffen. Zum MDT wurden bereits äußerst vielversprechende Tierstudien durchgeführt. Da die SPION durch magnetische Wechselfelder auch noch erhitzt werden können, besteht außerdem die Möglichkeit einer Kombination mit Hyperthermie. Allerdings sind viele Auswirkungen der Nanotechnologie auf den Menschen bisher noch völlig unbekannt, sodass toxikologische Untersuchungen hierzu unabdingbar sind. Eine Implementierung dieses vielversprechenden Therapieansatzes in die Klinik ist nur durch interdisziplinäre Zusammenarbeit und entsprechende finanzielle Unterstützung möglich.

Schlüsselwörter

Nanomedizin Nanotechnologie Magnetisches Drug Targeting Krebstherapie Theranostika 

Nanomedicine

Innovative applications in medicine

Abstract

Nanomedicine is a new and upcoming area in medicine. In particular, superparamagnetic iron oxide nanoparticles (SPION) deserve attention as they can be used for diagnostics and therapy (“theranostics”). For diagnosis in vivo SPION are already used as contrast agents in magnetic resonance imaging; in vitro they are used for cell separation. For therapy, magnetic drug targeting is a particularly promising approach. It enables a goal-oriented local application of active substances. Very promising animal experiments have already been performed. Moreover, SPION can be heated by alternating magnetic fields, so combination with hyperthermia is also possible. However, many effects of nanotechnology on the human organism are not known. Hence, further investigations are indispensable to elucidate possible toxic effects. Implementation of this promising therapy into the clinical setting will be possible due to interdisciplinary cooperation and respective financial support.

Keywords

Nanomedicine Nanotechnology Magnetic drug targeting Cancer therapy Theranostics 

Notes

Danksagung/Interessenkonflikt

Für die Förderung der Forschungsarbeiten möchte ich mich bei der Else Kröner-Fresenius-Stiftung, der Deutschen Forschungsgemeinschaft (AL552/3-3), dem Bundesministerium für Bildung und Forschung (FKZ: 01EX1012B), der Emerging Fields Initiative der Friedrich-Alexander-Universität Erlangen-Nürnberg und der Medizinischen Forschungsstiftung Erlangen sehr herzlich bedanken.

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Literatur

  1. 1.
    Alexiou C, Arnold W, Klein R et al (2000) Locoregional cancer treatment with magnetic drug targeting. Cancer Res 60:6641–6648PubMedGoogle Scholar
  2. 2.
    Alexiou C, Diehl D, Henninger P et al (2006) A high field gradient magnet for magnetic drug targeting. IEEE Trans Appl Supercond 16:1527–1530CrossRefGoogle Scholar
  3. 3.
    Alexiou C, Jurgons R, Schmid R et al (2003) Magnetic drug targeting—biodistribution of the magnetic carrier and the chemotherapeutic agent mitoxantrone after locoregional cancer treatment. J Drug Target 11:139–149PubMedCrossRefGoogle Scholar
  4. 4.
    Alexiou C, Jurgons R, Schmid R et al (2005) Magnetisches Drug Targeting: ein neuer Ansatz in der lokoregionären Tumortherapie mit Chemotherapeutika – Tierexperimentelle Untersuchungen. HNO 53:618–622PubMedCrossRefGoogle Scholar
  5. 5.
    Alexiou C, Jurgons R, Seliger C et al (2006) Medical applications of magnetic nanoparticles. J Nanosci Nanotechnol 6:2762–2768PubMedCrossRefGoogle Scholar
  6. 6.
    Alexiou C, Jurgons R, Seliger C et al (2007) Delivery of Superparamagnetic Nanoparticles for local chemotherapy after intraarterial infusion and magnetic targeting. Anticancer Res 27:2019–2022PubMedGoogle Scholar
  7. 7.
    Alexiou C, Schmid R, Jurgons R et al (2006) Targeting cancer cells: magnetic nanoparticles as drug carrier. Eur Biophys J 35:446–450PubMedCrossRefGoogle Scholar
  8. 8.
    Alexiou C, Schmidt A, Klein RJ et al (2002) Magnetic drug targeting: biodistribution and dependency on magnetic field strength. J Magn Magn Mater 252:363–366CrossRefGoogle Scholar
  9. 9.
    Alexiou C, Tietze R, Schreiber E et al (2010) Pharmakotherapie mittels Nanomedizin: Magnetische Nanopartikel für Hyperthermie und Drug Delivery. Neue Chancen für die Krebsbehandlung. Bundesgesundheitsblatt 53:839–845CrossRefGoogle Scholar
  10. 10.
    Alexiou C, Tietze R, Schreiber E et al (2011) Cancer therapy with drug loaded magnetic nanoparticles—magnetic drug targeting. J Magn Magn Mater 323:1404–1407CrossRefGoogle Scholar
  11. 11.
    Bilkenroth U, Taubert H, Riemann D et al (2001) Detection and enrichment of disseminated renal carcinoma cells from peripheral blood by immunomagnetic cell separation. Int J Cancer 92:577–582PubMedCrossRefGoogle Scholar
  12. 12.
    Donaldson K, Murphy FA, Duffin R et al (2010) Asbestos, carbon nanotubes and the pleural mesothelium: a review of the hypothesis regarding the role of long fibre retention in the parietal pleura, inflammation and mesothelioma. Part Fibre Toxicol 7:5PubMedCrossRefGoogle Scholar
  13. 13.
    Dürr S, Lyer S, Mann J et al (2012) Real-time cell analysis of human cancer cell lines after chemotherapy with functionalized magnetic nanoparticles. Anticancer Res 32:1983–1990PubMedGoogle Scholar
  14. 14.
    Dürr S, Tietze R, Lyer S et al (2012) Nanomedicine in otorhinolaryngology—future prospects. Laryngorhinootologie 91:6–12PubMedCrossRefGoogle Scholar
  15. 15.
    Gao Y (2005) Biofunctionalization of magnetic nanoparticles. In: Kumar C (Hrsg) Biofunctionalization of nanomaterials. Wiley-VCH, Weinheim, S 72–98Google Scholar
  16. 16.
    Grodzinski P (2007) The Workings of NCI Nanotechnology Alliance for Cancer—an Opportunity for a new class of diagnostic and therapeutic solutions based on nanotechnology. http://ion.chem.usu.edu/~tapaskar/piotr.pdf (Zugegriffen: 23. Mai 2012)Google Scholar
  17. 17.
    Harisinghani MG, Barentsz J, Hahn PF et al (2003) Noninvasive detection of clinically occult lymph-node metastases in prostate cancer. N Engl J Med 348:2491–2499PubMedCrossRefGoogle Scholar
  18. 18.
    Hodenius M (2002) Polymer- und liposomstabilisierte Ferrofluide und ihre Funktionalisierung. PhD thesis, Fakultät für Mathematik, Informatik und Naturwissenschaften RWTH AachenGoogle Scholar
  19. 19.
    Jurgons R, Seliger C, Hilpert A et al (2006) Drug loaded magnetic nanoparticles for cancer therapy. J Phys Condens Matter 18:2893–2902CrossRefGoogle Scholar
  20. 20.
    Lauterwasser C (2005), Small sizes that matter: opportunities and risks of nanotechnologies, OECD/Allianz Group, MünchenGoogle Scholar
  21. 21.
    Lyer S, Tietze R, Jurgons R et al (2010) Visualisation of tumour regression after local chemotherapy with magnetic nanoparticles—a pilot study. Anticancer Res 30:1553–1558PubMedGoogle Scholar
  22. 22.
    Maier-Hauff K, Ulrich F, Nestler D et al (2011) Efficacy and safety of intratumoral thermotherapy using magnetic iron-oxide nanoparticles combined with external beam radiotherapy on patients with recurrent glioblastoma multiforme. J Neurooncol 103:317–324PubMedCrossRefGoogle Scholar
  23. 23.
    Nauts HC, Fowler GA, Bogatko FH (1953) A review of the influence of bacterial infection and of bacterial products (Coley’s toxins) on malignant tumors in man; a critical analysis of 30 inoperable cases treated by Coley’s mixed toxins, in which diagnosis was confirmed by microscopic examination selected for special study. Acta Med Scand 276:1–103Google Scholar
  24. 24.
    Pankhurst QA, Thanh NTK, Jones SK et al (2009) Progress in applications of magnetic nanoparticles in biomedicine. J Phys D Appl Phys 42:224001–224016CrossRefGoogle Scholar
  25. 25.
    Peer D, Karp JM, Hong S et al (2007) Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol 2:751–760PubMedCrossRefGoogle Scholar
  26. 26.
    Perkins WR, Ahmad I, Li X et al (2000) Novel therapeutic nano-particles (lipocores): trapping poorly water soluble compounds. Int J Pharm 200:27–39PubMedCrossRefGoogle Scholar
  27. 27.
    Rahn H, Gomez-Morilla I, Jurgons R et al (2008) Microcomputed tomography analysis of ferrofluids used for cancer treatment. J Phys Condens Matter 20:204152–204156PubMedCrossRefGoogle Scholar
  28. 28.
    Richter H, Wiekhorst F, Schwarz K et al (2009) Magnetrelaxometric quantification of magnetic nanoparticles in an artery model after ex vivo magnetic drug targeting. Phys Med Biol 54:N417–424PubMedCrossRefGoogle Scholar
  29. 29.
    Seliger C, Jurgons R, Wiekhorst F et al (2007) In vitro investigation of the behaviour of magnetic particles by a circulating artery model. J Magn Magn Mater 311:358–362CrossRefGoogle Scholar
  30. 30.
    Shimizu K, Ito A, Yoshida T et al (2007) Bone tissue engineering with human mesenchymal stem cell sheets constructed using magnetite nanoparticles and magnetic force. J Biomed Mater Res B Appl Biomater 82:471–480PubMedGoogle Scholar
  31. 31.
    Storm G, Belliot SO, Daemen T et al (1995) Surface modifi cation of nanoparticles to oppose uptake by the mononuclear phagocyte system. Adv Drug Deliv Rev 17:31–48CrossRefGoogle Scholar
  32. 32.
    Tietze R, Jurgons R, Lyer S et al (2009) Quantification of drug-loaded magnetic nanoparticles in rabbit liver and tumor after in vivo administration. J Magn Magn Mater 321:1465–1468CrossRefGoogle Scholar
  33. 33.
    Tietze R, Lyer S, Dürr S et al (2012) Nanoparticles for cancer therapy using magnetic forces. Nanomedicine 7:447–457PubMedCrossRefGoogle Scholar
  34. 34.
    Tietze R, Lyer S, Schreiber E et al (2011) Local cancer therapy with magnetic nanoparticles. In: Alexiou C (Hrsg) Nanomedicine—Basic and clinical applications in diagnostics and therapy. Else Kröner-Fresenius Symp, Bd 2. Karger, Basel, S 154–163Google Scholar
  35. 35.
    Tietze R, Rahn H, Lyer S et al (2011) Visualization of superparamagnetic nanoparticles in vascular tissue using µCT and histology. Histochem Cell Biol 135:153–158PubMedCrossRefGoogle Scholar
  36. 36.
    Tietze R, Schreiber E, Lyer S et al (2010) Mitoxantrone loaded superparamagnetic nanoparticles for drug targeting: a versatile and sensitive method for quantification of drug enrichment in rabbit tissues using HPLC-UV. J Biomed Biotechnol 597304Google Scholar
  37. 37.
    Wagner V, Dullaart A, Bock AK et al (2006) The emerging nanomedicine landscape. Nat Biotechnol 24:1211–1217PubMedCrossRefGoogle Scholar
  38. 38.
    Wiekhorst F, Jurgons R, Steinhoff U et al (2006) Quantification of magnetic nanoparticles by magnetorelaxometry and comparison to histology after magnetic drug targeting. J Nanosci Nanotechnol 6:3222–3225PubMedCrossRefGoogle Scholar
  39. 39.
    Gleich B, Hellwig N, Bridell H et al (2007) Design and evaluation of magnetic fields for nanoparticle drug targeting in cancer. IEEE Trans Nanotechnol 6:164–170CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Hals-Nasen-Ohren-Klinik, Kopf- und Halschirurgie, Sektion für Experimentelle Onkologie und Nanomedizin (SEON)Universitätsklinikum ErlangenErlangenDeutschland

Personalised recommendations