Advertisement

HNO

, Volume 56, Issue 4, pp 429–435 | Cite as

Die Entstehung und Behandlung der Presbyakusis

Heutiger Stand und Perspektiven für die Zukunft
  • B. Mazurek
  • T. Stöver
  • H. Haupt
  • J. Gross
  • A. Szczepek
HNO-Praxis

Zusammenfassung

Neben endogenen und exogenen Ursachen können „physiologische Alterungsprozesse“ zur Abnahme des Hörvermögens führen. Zu den wichtigsten exogenen Faktoren werden in Industrieländern Lärm und Überernährung gezählt. Als Auslöser der Presbyakusis werden Hypoxie/Ischämie, Radikalbildung und oxidativer Stress, apoptotischer und nekrotischer Zelltod von Haarzellen und Spiralganglien sowie vererbte bzw. erworbene Mutationen der mitochondrialen DNA diskutiert.

Therapeutisch steht zzt. eine möglichst frühzeitige und beidseitige Versorgung mit Hörgeräten an erster Stelle, um die Kommunikation zu verbessern und die Hörbahn mit akustischen Signalen zu versorgen. Hierdurch kann auch die Detektionsschwelle eines bestehenden Tinnitussignals angehoben werden. Verschiedene pharmakologisch orientierte Behandlungsstrategien werden zzt. diskutiert. Um Schaden durch oxidativen Stress zu vermeiden oder zu mindern, kommen die Gabe von Antioxidanzien oder eine Kalorienreduzierung in der Nahrung in Betracht. Ein weiterer Ansatz wäre die Überexpression oder die Modulation der Superoxiddismutase 2 (SOD2) in der Kochlea, da tierexperimentell eine starke Abnahme der SOD2 im Alter nachgewiesen wurde. Technisch könnte dieser therapeutische Ansatz durch einen adenoviral vermittelten Gentransfer realisiert werden. Schließlich bietet die Haarzellregeneration eine Möglichkeit zur Behandlung der Presbyakusis in der Zukunft.

Schlüsselwörter

Presbyakusis Hypoxie/Ischämie Freie Radikale Mitochondrien Therapie 

Pathogenesis and treatment of presbyacusis

Current status and future perspectives

Abstract

Factors responsible for presbyacusis include physiological ageing processes as well as endogenous or exogenous causes. In the industrial countries, two main exogenous causes are exposure to loud noise and obesity. Pathomechanisms contributing to presbyacusis are hypoxia/ischemia, reactive species formation and oxidative stress, apoptotic and necrotic death of hair cells and spiral ganglion cells as well as inherited and acquired mutations in the mitochondrial DNA.

Important for the successful treatment of presbyacusis is a timely fitting of hearing aids on both ears to improve communication and provide the auditory system with acoustic information. Using the hearing aids will also elevate the detection threshold of an existing tinnitus signal. At present, several therapeutic strategies based on pharmacological intervention are under discussion. The application of antioxidants or caloric restriction are considered to prevent or reduce oxidative stress-induced damage. Animal experiments evidenced that superoxide dismutase 2 (SOD2) strongly decreases in age; thus, a further approach may be the overexpression or modulation of the SOD2 within the cochlea. Adenoviral-mediated gene transfer technology would be a tempting approach to address this type of therapy. Finally, hair cell regeneration could be a possible treatment of presbyacusis in the future.

Keywords

Presbyacusis Hypoxia/ischemia Free radicals Mitochondria Therapy 

Notes

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Literatur

  1. 1.
    Andreeva N, Nyamaa A, Haupt H et al. (2006) Recombinant human erythropoietin prevents ischemia-induced apoptosis and necrosis in explant cultures of the rat organ of Corti. Neurosci Lett 396: 86–90CrossRefPubMedGoogle Scholar
  2. 2.
    Böhme G (1996) Presbyakusis. In: Berghaus A, Rettinger G, Böhme G (Hrsg) Hals-Nasen-Ohren-Heilkunde. Hippokrates, Stuttgart, S 171–173Google Scholar
  3. 3.
    Canterbury DR (1978) Public health audiology in rural Alaska: an interagency approach. ASHA 20: 887–890PubMedGoogle Scholar
  4. 4.
    Caspary DM, Holder TM, Hughes LF et al. (1999) Age-related changes in GABA(A) receptor subunit composition and function in rat auditory system. Neuroscience 93: 307–312CrossRefPubMedGoogle Scholar
  5. 5.
    Caspary DM, Milbrandt JC, Helfert RH (1995) Central auditory aging: GABA changes in the inferior colliculus. Exp Gerontol 30: 349–360CrossRefPubMedGoogle Scholar
  6. 6.
    Cransac H, Peyrin L, Cottet-Emard JM et al. (1996) Aging effects on monoamines in rat medial vestibular and cochlear nuclei. Hear Res 100: 150–156CrossRefPubMedGoogle Scholar
  7. 7.
    Eggermont JJ (2005) Tinnitus: neurobiological substrates. Drug Discov Today 10: 1283–1290CrossRefPubMedGoogle Scholar
  8. 8.
    Evans P, Halliwell B (1999) Free radicals and hearing. Cause, consequence, and criteria. Ann N Y Acad Sci 884: 19–40CrossRefPubMedGoogle Scholar
  9. 9.
    Gates GA, Mills JH (2005) Presbycusis. Lancet 366: 1111–1120CrossRefPubMedGoogle Scholar
  10. 10.
    Gross J (2005) Molekulare Grundlagen von Hypoxie und Asphyxie. In: Ganten D, Ruckpaul K (Hrsg) Molekularmedizinische Grundlagen von fetalen und neonatalen Erkrankungen. Springer, Berlin Heidelberg, S 573–605Google Scholar
  11. 11.
    Herrera AJ, Machado A, Cano J (1991) The influence of age on neurotransmitter turnover in the rat’s superior colliculus. Neurobiol Aging 12: 289–294CrossRefPubMedGoogle Scholar
  12. 12.
    Hesse G (2004) Hörgeräte im Alter. Warum ist die Versorgung so schwierig? HNO 52: 321–328CrossRefPubMedGoogle Scholar
  13. 13.
    Hesse G, Laubert A (2001) Tinnitus-Retraining-Therapie. Indikation und Behandlungsziele. HNO 49: 764–777CrossRefPubMedGoogle Scholar
  14. 14.
    Holmes C, Arranz MJ, Powell JF et al. (1998) 5-HT2A and 5-HT2C receptor polymorphisms and psychopathology in late onset Alzheimer’s disease. Hum Mol Genet 7: 1507–1509CrossRefPubMedGoogle Scholar
  15. 15.
    Hu BH, Guo W, Wang PY et al. (2000) Intense noise-induced apoptosis in hair cells of guinea pig cochleae. Acta Otolaryngol 120: 19–24CrossRefPubMedGoogle Scholar
  16. 16.
    Hu BH, Henderson D, Nicotera TM (2002) Involvement of apoptosis in progression of cochlear lesion following exposure to intense noise. Hear Res 166: 62–71CrossRefPubMedGoogle Scholar
  17. 17.
    Jiang H, Talaska AE, Schacht J et al. (2007) Oxidative imbalance in the aging inner ear. Neurobiol Aging 28: 1605–1612CrossRefPubMedGoogle Scholar
  18. 18.
    Johnsson LG, Hawkins JE Jr (1972) Vascular changes in the human inner ear associated with aging. Ann Otol Rhinol Laryngol 81: 364–376PubMedGoogle Scholar
  19. 19.
    Kawamoto K, Sha SH, Minoda R et al. (2004) Antioxidant gene therapy can protect hearing and hair cells from ototoxicity. Mol Ther 9: 173–181CrossRefPubMedGoogle Scholar
  20. 20.
    Kokotas H, Petersen MB, Willems PJ (2007) Mitochondrial deafness. Clin Genet 71: 379–391CrossRefPubMedGoogle Scholar
  21. 21.
    Kopke R, Allen KA, Henderson D et al. (1999) A radical demise. Toxins and trauma share common pathways in hair cell death. Ann N Y Acad Sci 884: 171–191CrossRefPubMedGoogle Scholar
  22. 22.
    Kujoth GC, Hiona A, Pugh TD et al. (2005) Mitochondrial DNA mutations, oxidative stress, and apoptosis in mammalian aging. Science 309: 481–484CrossRefPubMedGoogle Scholar
  23. 23.
    Le T, Keithley EM (2007) Effects of antioxidants on the aging inner ear. Hear Res 226: 194–202CrossRefPubMedGoogle Scholar
  24. 24.
    Ledoux SP, Druzhyna NM, Hollensworth SB et al. (2007) Mitochondrial DNA repair: a critical player in the response of cells of the CNS to genotoxic insults. Neuroscience 145: 1249–1259CrossRefPubMedGoogle Scholar
  25. 25.
    Lee HC, Wei YH (2007) Oxidative stress, mitochondrial DNA mutation, and apoptosis in aging. Exp Biol Med (Maywood) 232: 592–606Google Scholar
  26. 26.
    Lefebvre PP, Malgrange B, Lallemend F et al. (2002) Mechanisms of cell death in the injured auditory system: otoprotective strategies. Audiol Neurootol 7: 165–170CrossRefPubMedGoogle Scholar
  27. 27.
    Lehnhardt E, Koch T (1994) Altersschwerhörigkeit. In: Naumann HH, Helms J, Herberhold C, Kastenbauer E (Hrsg) Oto-Rhino-Laryngologie in Klinik und Praxis. Band 1 Ohr. Thieme, Stuttgart, S 778–782Google Scholar
  28. 28.
    Lustig LR (2006) Nicotinic acetylcholine receptor structure and function in the efferent auditory system. Anat Rec A Discov Mol Cell Evol Biol 288: 424–434PubMedGoogle Scholar
  29. 29.
    Majno G, Joris I (1995) Apoptosis, oncosis, and necrosis. An overview of cell death. Am J Pathol 146: 3–15PubMedGoogle Scholar
  30. 30.
    Mazurek B, Rheinlander C, Fuchs FU et al. (2006) Einfluss von Ischämie/Hypoxie auf die HIF-1-Aktivität und Expression von hypoxieabhängigen Genen in der Kochlea der neugeborenen Ratte. HNO 54: 689–697CrossRefPubMedGoogle Scholar
  31. 31.
    Mazurek B, Winter E, Fuchs J et al. (2003) Susceptibility of the hair cells of the newborn rat cochlea to hypoxia and ischemia. Hear Res 182: 2–8CrossRefPubMedGoogle Scholar
  32. 32.
    Mukherjee J, Christian BT, Dunigan KA et al. (2002) Brain imaging of 18F-fallypride in normal volunteers: blood analysis, distribution, test-retest studies, and preliminary assessment of sensitivity to aging effects on dopamine D-2/D-3 receptors. Synapse 46: 170–188CrossRefPubMedGoogle Scholar
  33. 33.
    Nelson EG, Hinojosa R (2006) Presbycusis: a human temporal bone study of individuals with downward sloping audiometric patterns of hearing loss and review of the literature. Laryngoscope 116: 1–12CrossRefPubMedGoogle Scholar
  34. 34.
    Oliveira JR, Zatz M (1999) The study of genetic polymorphisms related to serotonin in Alzheimer’s disease: a new perspective in a heterogenic disorder. Braz J Med Biol Res 32: 463–467PubMedGoogle Scholar
  35. 35.
    Pickles JO (2004) Mutation in mitochondrial DNA as a cause of presbyacusis. Audiol Neurootol 9: 23–33CrossRefPubMedGoogle Scholar
  36. 36.
    Prazma J, Carrasco VN, Butler B et al. (1990) Cochlear microcirculation in young and old gerbils. Arch Otolaryngol Head Neck Surg 116: 932–936PubMedGoogle Scholar
  37. 37.
    Ries PW (1994) Prevalence and characteristics of persons with hearing trouble: United States, 1990–1991. Series 10: Data From the National Health Survey, No 188, US Department of Health and Human Services, Publication No. (PHS) 94-1516, Hyattsville, MD, pp 1–75Google Scholar
  38. 38.
    Riva C, Donadieu E, Magnan J et al. (2007) Age-related hearing loss in CD/1 mice is associated to ROS formation and HIF target proteins up-regulation in the cochlea. Exp Gerontol 42: 327–336CrossRefPubMedGoogle Scholar
  39. 39.
    Rosen S, Bergman M, Plester D et al. (1962) Presbycusis study of a relatively noise-free population in the Sudan. Ann Otol Rhinol Laryngol 71: 727–743PubMedGoogle Scholar
  40. 40.
    Salvinelli F, Casale M, Paparo F et al. (2003) Subjective tinnitus, temporomandibular joint dysfunction, and serotonin modulation of neural plasticity: causal or casual triad? Med Hypotheses 61: 446–448CrossRefPubMedGoogle Scholar
  41. 41.
    Schacht J, Hawkins JE (2005) Sketches of otohistory. Part 9: presby[a]cusis. Audiol Neurootol 10: 243–247CrossRefPubMedGoogle Scholar
  42. 42.
    Schuknecht HF (1964) Further observations on the pathology of presbycusis. Arch Otolaryngol Head Neck Surg 80: 369–382Google Scholar
  43. 43.
    Seidman MD (2000) Effects of dietary restriction and antioxidants on presbyacusis. Laryngoscope 110: 727–738CrossRefPubMedGoogle Scholar
  44. 44.
    Seidman MD, Ahmad N, Bai U (2002) Molecular mechanisms of age-related hearing loss. Ageing Res Rev 1: 331–343CrossRefPubMedGoogle Scholar
  45. 45.
    Someya S, Yamasoba T, Weindruch R et al. (2007) Caloric restriction suppresses apoptotic cell death in the mammalian cochlea and leads to prevention of presbycusis. Neurobiol Aging 28: 1613–1622CrossRefPubMedGoogle Scholar
  46. 46.
    Soucek S, Michaels L, Frohlich A (1987) Pathological changes in the organ of Corti in presbyacusis as revealed by microslicing and staining. Acta Otolaryngol Suppl 436: 93–102CrossRefPubMedGoogle Scholar
  47. 47.
    Tadros SF, D’Souza M, Zettel ML et al. (2007) Glutamate-related gene expression changes with age in the mouse auditory midbrain. Brain Res 1127: 1–9CrossRefPubMedGoogle Scholar
  48. 48.
    Takumida M, Anniko M (2005) Radical scavengers: a remedy for presbyacusis. A pilot study. Acta Otolaryngol 125: 1290–1295CrossRefPubMedGoogle Scholar
  49. 49.
    Thumfart WF, Welleschick B, Gunkel AR (1996) Erkrankungen des Innenohres – Otoneurologie. In: Ganz H, Jahnke V (Hrsg) Hals-Nasen-Ohren-Heilkunde. Walter de Gruyter, Berlin, S 83–105Google Scholar
  50. 50.
    Uhlmann RF, Larson EB, Rees TS et al. (1989) Relationship of hearing impairment to dementia and cognitive dysfunction in older adults. JAMA 261: 1916–1919CrossRefPubMedGoogle Scholar
  51. 51.
    Venero JL, Roza C de la, Machado A et al. (1993) Age-related changes on monoamine turnover in hippocampus of rats. Brain Res 631: 89–96CrossRefPubMedGoogle Scholar
  52. 52.
    Venero JL, Machado A, Cano J (1991) Age effects on monoamine turnover of the rat substantia nigra. Brain Res 557: 109–114CrossRefPubMedGoogle Scholar
  53. 53.
    Volkow ND, Fowler JS, Wang GJ et al. (1994) Decreased dopamine transporters with age in health human subjects. Ann Neurol 36: 237–239CrossRefPubMedGoogle Scholar
  54. 54.
    Willott JF (1999) Neurogerontology: Aging and the nervous system. Springer, New YorkGoogle Scholar
  55. 55.
    Willott JF, Hnath CT, Lister JJ (2001) Modulation of presbycusis: current status and future directions. Audiol Neurootol 6: 231–249CrossRefPubMedGoogle Scholar
  56. 56.
    Wright A, Davis A, Bredberg G et al. (1987) Hair cell distributions in the normal human cochlea. A report of a European working group. Acta Otolaryngol Suppl 436: 15–24CrossRefPubMedGoogle Scholar
  57. 57.
    Yamasoba T, Kondo K (2006) Supporting cell proliferation after hair cell injury in mature guinea pig cochlea in vivo. Cell Tissue Res 325: 23–31CrossRefPubMedGoogle Scholar
  58. 58.
    Yamasoba T, Someya S, Yamada C et al. (2007) Role of mitochondrial dysfunction and mitochondrial DNA mutations in age-related hearing loss. Hear Res 226: 185–193CrossRefPubMedGoogle Scholar

Copyright information

© Springer Medizin Verlag 2008

Authors and Affiliations

  • B. Mazurek
    • 1
  • T. Stöver
    • 2
  • H. Haupt
    • 1
  • J. Gross
    • 1
  • A. Szczepek
    • 1
  1. 1.HNO-Klinik und Poliklinik, Tinnituszentrum und Molekularbiologisches ForschungslaborCharité – Universitätsmedizin Berlin, Campus Charité-MitteBerlinDeutschland
  2. 2.HNO-Klinik und Poliklinik, Medizinische Hochschule HannoverHannoverDeutschland

Personalised recommendations