HNO

, Volume 56, Issue 1, pp 27–36 | Cite as

Update zur Physiologie und Pathophysiologie des Innenohrs

Pathomechanismen der sensorineuralen Schwerhörigkeit
  • N. Strenzke
  • D. Pauli-Magnus
  • A. Meyer
  • A. Brandt
  • H. Maier
  • T. Moser
Leitthema

Zusammenfassung

Die Schwerhörigkeit ist die häufigste humane Sinnesbehinderung. Der sensorineuralen Schwerhörigkeit (SNSH), auf die etwa 70% der Schwerhörigkeiten entfallen, liegen verschiedene pathologische Veränderungen im Innenohr und im Hörnerv zugrunde. Die individuelle Beeinträchtigung durch die SNSH und der Erfolg einer apparativen Rehabilitation hängen kritisch von den zugrunde liegenden Pathomechanismen ab. In dieser Übersicht stellen wir aktuelle Erkenntnisse über die zelluläre Pathophysiologie der SNSH vor, die überwiegend aus Studien an Mauslinien mit gezielten genetischen Modifikationen gewonnen wurden. Zuerst werden interessante Einsichten aus Experimenten von Mausmutanten mit spezifischen Defekten der kochleären Ionenhomöostase oder Verstärkung dargestellt. Wir wenden uns dann ausführlich krankhaften Veränderungen der afferenten Synapse der inneren Haarzellen (auditorische Synaptopathie) und des Hörnerven (auditorische Neuropathie) zu. Beide nosologischen Entitäten haben in den letzten Jahren auch große klinische Beachtung gefunden. Diesen SNSH-Varianten ist die gestörte zeitliche Verarbeitung von Schallsignalen gemeinsam. Daraus resultiert ein besonders schlechtes Sprachverständnis, dessen Störung oft über das von der Tonschwelle erwartete Maß hinausgeht. Das Ausmaß der Schwerhörigkeit reicht von milden Formen mit Defizit ausschließlich in der zeitlichen Verarbeitung von Schallsignalen bis hin zur Taubheit. Dabei sind otoakustische Emissionen als Zeichen einer normalen kochleären Verstärkung zumindest initial häufig zu beobachten.

Zusammenfassend kann gesagt werden, dass gut charakterisierte Tiermodelle unser pathophysiologisches Verständnis der SNSH vertiefen. Sie leisten wertvolle Hilfe bei der Etablierung neuer audiologischer Protokolle zur Differenzierung der einer individuellen SNSH zugrunde liegenden Pathomechanismen. Auf diese Weise tragen sie zur gezielten Diagnostik und Rehabilitation von SNSH-Patienten bei.

Schlüsselwörter

Auditorische Synaptopathie Auditorische Neuropathie Mausmodell Haarzellen Kochleäre Ionenhomöostase Verstärkung 

Update on physiology and pathophysiology of the inner ear

Pathomechanisms of sensorineural hearing loss

Abstract

Hearing impairment is the most common form of human sensory deficit. The most frequent form, sensorineural hearing loss (SNHL), which accounts for approximately 70% of cases, encompasses various pathologies in both the inner ear and the auditory nerve. The individual hearing impairment and its outcome following aiding with hearing devices critically depend on the underlying disorder. Here recent progress in our understanding of the cellular mechanisms of SNHL in genetically engineered mouse models is reviewed. First, insights gained from models for specific defects in cochlear sound amplification and ion homeostasis are discussed followed by a focus on disorders of the inner hair cell synapses (auditory synaptopathy) and the auditory nerve (auditory neuropathy). Both nosological entities have also attracted substantial clinical interest in recent years and share an impaired temporal processing of auditory stimuli. This results in poor speech recognition, often out of proportion to the pure tone threshold. Hearing loss can range from mild variants with exclusive deficits of temporal processing to complete deafness. At least initially, signs of normal outer hair cell function such as evoked otoacoustic emissions can be found.

In summary, well-characterized animal models allow us to refine our pathophysiological understanding of SNHL and offer invaluable help in defining toolboxes for investigating the mechanism(s) underlying the SNHL of affected individuals. Together, this will contribute to custom-tailored diagnostics and rehabilitation of SNHL patients.

Keywords

Auditory synaptopathy Auditory neuropathy Mouse model Auditory hair cells Cochlear ion homeostasis Otoacoustic emissions 

Literatur

  1. 1.
    Ahmad S, Tang W, Chang Q et al. (2007) Restoration of connexin26 protein level in the cochlea completely rescues hearing in a mouse model of human connexin30-linked deafness. Proc Natl Acad Sci U S A 104: 1337–1341PubMedCrossRefGoogle Scholar
  2. 2.
    Amatuzzi MG, Northrop C, Liberman MC et al. (2001) Selective inner hair cell loss in premature infants and cochlea pathological patterns from neonatal intensive care unit autopsies. Arch Otolaryngol Head Neck Surg 127: 629–636PubMedGoogle Scholar
  3. 3.
    Beltramello M, Piazza V, Bukauskas FF et al. (2005) Impaired permeability to Ins(1,4,5)P3 in a mutant connexin underlies recessive hereditary deafness. Nat Cell Biol 7: 63–69PubMedCrossRefGoogle Scholar
  4. 4.
    Brandt A, Striessnig J, Moser T (2003) CaV1.3 channels are essential for development and presynaptic activity of cochlear inner hair cells. J Neurosci 23: 10832–10840PubMedGoogle Scholar
  5. 5.
    Cant NB, Benson CG (2003) Parallel auditory pathways: projection patterns of the different neuronal populations in the dorsal and ventral cochlear nuclei. Brain Res Bull 60: 457–474PubMedCrossRefGoogle Scholar
  6. 6.
    Cohen-Salmon M, Ott T, Michel V et al. (2002) Targeted ablation of connexin26 in the inner ear epithelial gap junction network causes hearing impairment and cell death. Curr Biol 12: 1106–1111PubMedCrossRefGoogle Scholar
  7. 7.
    Collin RW, Kalay E, Oostrik J et al. (2007) Involvement of DFNB59 mutations in autosomal recessive nonsyndromic hearing impairment. Hum Mutat 28: 718–723PubMedCrossRefGoogle Scholar
  8. 8.
    Delmaghani S, Castillo FJ del, Michel V et al. (2006) Mutations in the gene encoding pejvakin, a newly identified protein of the afferent auditory pathway, cause DFNB59 auditory neuropathy. Nat Genet 38: 770–778PubMedCrossRefGoogle Scholar
  9. 9.
    Ding DL, Wang J, Salvi R et al. (1999) Selective loss of inner hair cells and type-I ganglion neurons in carboplatin-treated chinchillas. Mechanisms of damage and protection. Ann N Y Acad Sci 884: 152–170PubMedCrossRefGoogle Scholar
  10. 10.
    Dou H, Vazquez AE, Namkung Y et al. (2004) Null mutation of alpha1D Ca2+ channel gene results in deafness but no vestibular defect in mice. J Assoc Res Otolaryngol 5: 215–226PubMedGoogle Scholar
  11. 11.
    Ebermann I, Walger M, Scholl HP et al. (2007) Truncating mutation of the DFNB59 gene causes cochlear hearing impairment and central vestibular dysfunction. Hum Mutat 28: 571–577PubMedCrossRefGoogle Scholar
  12. 12.
    Fettiplace R, Hackney CM (2006) The sensory and motor roles of auditory hair cells. Nat Rev Neurosci 7: 19–29PubMedCrossRefGoogle Scholar
  13. 13.
    Friedman LM, Dror AA, Avraham KB (2007) Mouse models to study inner ear development and hereditary hearing loss. Int J Dev Biol 51: 609–631PubMedCrossRefGoogle Scholar
  14. 14.
    Fuchs PA (2005) Time and intensity coding at the hair cell’s ribbon synapse. J Physiol 566: 7–12PubMedCrossRefGoogle Scholar
  15. 15.
    Glowatzki E, Fuchs PA (2002) Transmitter release at the hair cell ribbon synapse. Nat Neurosci 5: 147–154PubMedCrossRefGoogle Scholar
  16. 16.
    Guinan JJ Jr (2006) Olivocochlear efferents: anatomy, physiology, function, and the measurement of efferent effects in humans. Ear Hear 27: 589–607PubMedCrossRefGoogle Scholar
  17. 17.
    Hashemzadeh Chaleshtori M, Simpson MA, Farrokhi E et al. (2007) Novel mutations in the pejvakin gene are associated with autosomal recessive non-syndromic hearing loss in Iranian families. Clin Genet 72: 261–263CrossRefGoogle Scholar
  18. 18.
    Henry WR, Mulroy MJ (1995) Afferent synaptic changes in auditory hair cells during noise-induced temporary threshold shift. Hear Res 84: 81–90PubMedCrossRefGoogle Scholar
  19. 19.
    Jentsch TJ (2000) Neuronal KCNQ potassium channels: physiology and role in disease. Nat Rev Neurosci 1: 21–30PubMedCrossRefGoogle Scholar
  20. 20.
    Jentsch TJ, Hubner CA, Fuhrmann JC (2004) Ion channels: function unravelled by dysfunction. Nat Cell Biol 6: 1039–1047PubMedCrossRefGoogle Scholar
  21. 21.
    Jentsch TJ, Maritzen T, Zdebik AA (2005) Chloride channel diseases resulting from impaired transepithelial transport or vesicular function. J Clin Invest 115: 2039–2046PubMedCrossRefGoogle Scholar
  22. 22.
    Keilmann A, Rühl S, Lenarz T, Lesinski-Schiedat A (2005) Outcome of cochlear implantation in patients with perisynaptic audiopathy (auditory neuropathy), a machted-pairs study. J Audiol 44: 10–18Google Scholar
  23. 23.
    Kharkovets T, Dedek K, Maier H et al. (2006) Mice with altered KCNQ4 K+ channels implicate sensory outer hair cells in human progressive deafness. EMBO J 25: 642–652PubMedCrossRefGoogle Scholar
  24. 24.
    Khimich D, Nouvian R, Pujol R et al. (2005) Hair cell synaptic ribbons are essential for synchronous auditory signalling. Nature 434: 889–894PubMedCrossRefGoogle Scholar
  25. 25.
    Kubisch C, Schroeder BC, Friedrich T et al. (1999) KCNQ4, a novel potassium channel expressed in sensory outer hair cells, is mutated in dominant deafness. Cell 96: 437–446PubMedCrossRefGoogle Scholar
  26. 26.
    Lacas-Gervais S, Guo J, Strenzke N et al. (2004) {beta}IV{Sigma}1 spectrin stabilizes the nodes of Ranvier and axon initial segments. J Cell Biol 166: 983–990PubMedCrossRefGoogle Scholar
  27. 27.
    Lautermann J, Cate WJ ten, Altenhoff P et al. (1998) Expression of the gap-junction connexins 26 and 30 in the rat cochlea. Cell Tissue Res 294: 415–420PubMedCrossRefGoogle Scholar
  28. 28.
    Legan PK, Lukashkina VA, Goodyear RJ et al. (2005) A deafness mutation isolates a second role for the tectorial membrane in hearing. Nat Neurosci 8: 1035–1042PubMedCrossRefGoogle Scholar
  29. 29.
    Lesinski-Schiedat A, Frohne C, Hemmaouil I et al. (2001) Funktionelle Taubheit bei peri-synaptischer Audiopathie – Isolierte Störungen der inneren Haarzellen? Laryngorhinootologie 80: 601–604PubMedCrossRefGoogle Scholar
  30. 30.
    Liberman MC, Gao J, He DZ et al. (2002) Prestin is required for electromotility of the outer hair cell and for the cochlear amplifier. Nature 419: 300–304PubMedCrossRefGoogle Scholar
  31. 31.
    Lim DJ (1976) Ultrastructural cochlear changes following acoustic hyperstimulation and ototoxicity. Ann Otol Rhinol Laryngol 85: 740–751PubMedGoogle Scholar
  32. 32.
    Liu XZ, Ouyang XM, Xia XJ et al. (2003) Prestin, a cochlear motor protein, is defective in non-syndromic hearing loss. Hum Mol Genet 12: 1155–1162PubMedCrossRefGoogle Scholar
  33. 33.
    McNeil PL, Kirchhausen T (2005) An emergency response team for membrane repair. Nat Rev Mol Cell Biol 6: 499–505PubMedCrossRefGoogle Scholar
  34. 34.
    Meyer NC, Nishimura CJ, McMordie S, Smith RJ (2007) Audioprofiling identifies TECTA and GJB2-related deafness segregating in a singel extended pedigree. Clin Genet 72: 130–137PubMedCrossRefGoogle Scholar
  35. 35.
    Moser T, Brandt A, Lysakowski A (2006 a) Hair cell ribbon synapses. Cell Tissue Res 326: 347–359PubMedCrossRefGoogle Scholar
  36. 36.
    Moser T, Neef A, Khimich D (2006 b) Mechanisms underlying the temporal precision of sound coding at the inner hair cell ribbon synapse. J Physiol 576: 55–62PubMedCrossRefGoogle Scholar
  37. 37.
    Moser T, Strenzke N, Meyer A et al. (2006 c) Diagnostik und Therapie der auditorischen Synaptppathie/Neuropathie. HNO 54: 833–841PubMedCrossRefGoogle Scholar
  38. 38.
    Murgia A, Orzan E, Polli R et al. (1999) Cx26 deafness: mutation analysis and clinical variability. J Med Genet 36: 829–832PubMedGoogle Scholar
  39. 39.
    Nouvian R, Beutner D, Parsons TD, Moser T (2006) Structure and function of the hair cell ribbon synapse. J Membr Biol 209: 153–165PubMedCrossRefGoogle Scholar
  40. 40.
    Oertel D, Young ED (2004) What’s a cerebellar circuit doing in the auditory system? Trends Neurosci 27: 104–110PubMedCrossRefGoogle Scholar
  41. 41.
    Ohlemiller KK (2006) Contributions of mouse models to understanding of age- and noise-related hearing loss. Brain Res 1091: 89–102PubMedCrossRefGoogle Scholar
  42. 42.
    Parkinson NJ, Olsson CL, Hallows JL et al. (2001) Mutant beta-spectrin 4 causes auditory and motor neuropathies in quivering mice. Nat Genet 29: 61–65PubMedCrossRefGoogle Scholar
  43. 43.
    Pauli-Magnus D, Hoch G, Strenzke N et al. (submitted) Detection and differentiation of sensorineural hearing loss in mice using Auditory Steady State Responses and transient Auditory Brainstem Responses. NeuroscienceGoogle Scholar
  44. 44.
    Plantinga RF, de Brouwer AP, Huygen PL et al. (2006) A novel TECTA mutation in a Dutch DFNA8/12 family confirms genotype-phenotype correlation. J Assoc Res Otolaryngol 7: 173–181PubMedCrossRefGoogle Scholar
  45. 45.
    Platzer J, Engel J, Schrott-Fischer A et al. (2000) Congenital deafness and sinoatrial node dysfunction in mice lacking class D L-type Ca2+ channels. Cell 102: 89–97PubMedCrossRefGoogle Scholar
  46. 46.
    Rodriguez-Ballesteros M, Castillo FJ del, Martin Y et al. (2003) Auditory neuropathy in patients carrying mutations in the otoferlin gene (OTOF). Hum Mutat 22: 451–456PubMedCrossRefGoogle Scholar
  47. 47.
    Rouillon I, Marcolla A, Roux I et al. (2006) Results of cochlear implantation in two children with mutations in the OTOF gene. Int J Pediatr Otorhinolaryngol 70: 689–696PubMedCrossRefGoogle Scholar
  48. 48.
    Roux I, Safieddine S, Nouvian R et al. (2006) Otoferlin, defective in a human deafness form, is essential for exocytosis at the auditory ribbon synapse. Cell 127: 277–289PubMedCrossRefGoogle Scholar
  49. 49.
    Russell IJ, Legan PK, Lukashkina VA et al. (2007) Sharpened cochlear tuning in a mouse with a genetically modified tectorial membrane. Nat Neurosci 10: 215–223PubMedCrossRefGoogle Scholar
  50. 50.
    Ryan A, Dallos P (1975) Effect of absence of cochlear outer hair cells on behavioural auditory threshold. Nature 253: 44–46PubMedCrossRefGoogle Scholar
  51. 51.
    Rybak LP, Ramkumar V (2007) Ototoxicity. Kidney Int 72: 931–935PubMedCrossRefGoogle Scholar
  52. 52.
    Schuknecht HF (1993) Pathology of the ear, 2nd edn. Lea & Febiger, PhiladelphiaGoogle Scholar
  53. 53.
    Schwander M, Sczaniecka A, Grillet N et al. (2007) A forward genetics screen in mice identifies recessive deafness traits and reveals that pejvakin is essential for outer hair cell function. J Neurosci 27: 2163–2175PubMedCrossRefGoogle Scholar
  54. 54.
    Stankovic K, Rio C, Xia A et al. (2004) Survival of adult spiral ganglion neurons requires erbB receptor signaling in the inner ear. J Neurosci 24: 8651–8661PubMedCrossRefGoogle Scholar
  55. 55.
    Starr A, Isaacson B, Michalewski HJ et al. (2004) A dominantly inherited progressive deafness affecting distal auditory nerve and hair cells. J Assoc Res Otolaryngol 5: 411–426PubMedCrossRefGoogle Scholar
  56. 56.
    Starr A, Michalewski HJ, Zeng FG et al. (2003) Pathology and physiology of auditory neuropathy with a novel mutation in the MPZ gene (Tyr145->Ser). Brain 126: 1604–1619PubMedCrossRefGoogle Scholar
  57. 57.
    Starr A, Picton TW, Sininger Y et al. (1996) Auditory neuropathy. Brain 119: 741–753PubMedCrossRefGoogle Scholar
  58. 58.
    Starr A, Feng G, Moser T (2007) Perspectives on auditory neuropathy: disorders of inner hair cell, auditory nerve and their synapse. In: Dallos P (ed) Handbook of the senses. Elsevier, AmsterdamGoogle Scholar
  59. 59.
    Steel KP, Kros CJ (2001) A genetic approach to understanding auditory function. Nat Genet 27: 143–149PubMedCrossRefGoogle Scholar
  60. 60.
    Strenzke N, Moser T (2006) Temperatur-sensitive auditorische Neuropathie bei Beta-4-Sigma1-Spektrin-Knockout-Mäusen. In: Jahrestagung der DGAGoogle Scholar
  61. 61.
    Suter U, Scherer SS (2003) Disease mechanisms in inherited neuropathies. Nat Rev Neurosci 4: 714–726PubMedCrossRefGoogle Scholar
  62. 62.
    Teubner B, Michel V, Pesch J et al. (2003) Connexin30 (Gjb6)-deficiency causes severe hearing impairment and lack of endocochlear potential. Hum Mol Genet 12: 13–21PubMedCrossRefGoogle Scholar
  63. 63.
    Toth T, Deak L, Fazakas F et al. (2007) A new mutation in the human pres gene and its effect on prestin function. Int J Mol Med 20: 545–550PubMedGoogle Scholar
  64. 64.
    Varga R, Kelley PM, Keats BJ et al. (2003) Non-syndromic recessive auditory neuropathy is the result of mutations in the otoferlin (OTOF) gene. J Med Genet 40: 45–50PubMedCrossRefGoogle Scholar
  65. 65.
    Békésy G von (1960) Experiments in Hearing. McGraw-Hill, New YorkGoogle Scholar
  66. 66.
    Wang Y, Hirose K, Liberman MC (2002) Dynamics of noise-induced cellular injury and repair in the mouse cochlea. J Assoc Res Otolaryngol 3: 248–268PubMedCrossRefGoogle Scholar
  67. 67.
    Wangemann P (2006) Supporting sensory transduction: cochlear fluid homeostasis and the endocochlear potential. J Physiol 576: 11–21PubMedCrossRefGoogle Scholar
  68. 68.
    Zeng FG, Kong YY, Michalewski HJ, Starr A (2005) Perceptual consequences of disrupted auditory nerve activity. J Neurophysiol 93: 3050–3063PubMedCrossRefGoogle Scholar
  69. 69.
    Zhao HB, Kikuchi T, Ngezahayo A, White TW (2006) Gap junctions and cochlear homeostasis. J Membr Biol 209: 177–186PubMedCrossRefGoogle Scholar
  70. 70.
    Zhou R, Assouline JG, Abbas PJ et al. (1995) Anatomical and physiological measures of auditory system in mice with peripheral myelin deficiency. Hear Res 88: 87–97PubMedCrossRefGoogle Scholar

Copyright information

© Springer Medizin Verlag 2007

Authors and Affiliations

  • N. Strenzke
    • 1
    • 2
  • D. Pauli-Magnus
    • 2
  • A. Meyer
    • 2
  • A. Brandt
    • 2
  • H. Maier
    • 4
  • T. Moser
    • 2
    • 3
  1. 1.Eaton Peabody Laboratory, MEEIHarvard UniversityBostonUSA
  2. 2.InnerEarLab, Department of Otolaryngology and Center for Molecular Physiology of the BrainUniversität GöttingenGöttingenDeutschland
  3. 3.InnerEarLab, Department of Otolaryngology and Center for Molecular Physiology of the BrainUniversität GöttingenGöttingenDeutschland
  4. 4.HNO-UniversitätsklinikHamburg-EppendorfDeutschland

Personalised recommendations