Advertisement

HNO

, Volume 54, Issue 5, pp 369–375 | Cite as

Trägt Nikotin zur Krebsentstehung im oberen Aerodigestivtrakt bei?

  • N. H. KleinsasserEmail author
  • A. W. Sassen
  • M. P. Semmler
  • R. Staudenmaier
  • U. A. Harréus
  • E. Richter
Originalien

Zusammenfassung

Hintergrund

Für die krebsauslösende Wirkung des Rauchens werden bisher andere Schadstoffe als Nikotin verantwortlich gemacht. Den Hinweisen, dass Nikotin selbst zur Tumorigenese beiträgt, geht diese Studie nach durch Untersuchung, ob dieser Suchtstoff auch eine direkte genotoxische Wirkung auf die Zielzellen der Krebsentstehung im oberen Aerodigestivtrakt beim Menschen hat.

Patienten und Methoden

Humane Gewebeproben aus Tonsilla palatina, Concha nasalis inferior und Larynx sowie periphere Lymphozyten wurden mit Nikotin in aufsteigenden Konzentrationen inkubiert. Die DNA-Schädigung wurde mit der alkalischen Einzelzell-Mikrogelelektrophorese ermittelt, zytotoxische Effekte mit dem Trypanblau-Ausschlusstest quantifiziert.

Ergebnisse

Nikotin erzeugt in allen Zelltypen einen dosisabhängigen Anstieg der DNA-Schädigung, der in den Proben aus Gaumenmandeln ab 1 mM, bei den Epithelien der unteren Nasenmuscheln und des Kehlkopfes sowie in Lymphozyten ab 0,25 mM einen relevanten Unterschied zur Negativkontrolle ergab. In diesem Konzentrationsbereich war die Vitalität der Zellen nicht eingeschränkt.

Fazit

Neben der Suchtinduktion trägt Nikotin potenziell direkt zur Tumorinitiation durch Tabakrauchinhaltsstoffe bei.

Schlüsselwörter

Nikotin Genotoxizität Tabakrauch Comet-Assay Humane Zielzellen Lymphozyten 

Does nicotine add to the carcinogenic strain of tobacco smoke?

Abstract

Background

It is accepted that nicotine in tobacco smoke causes addiction via nicotinic acetylcholine receptors in the central nervous system. For a long time, the tumorigenic potential of smoking was attributed to compounds other than nicotine. However, more recently data have accumulated which suggest that nicotine may add to the cancer risk by stimulating cellular growth via non-neuronal acetylcholine receptors, by suppressing apoptosis, and by inducing angiogenesis not only in atheromatous plaques but also in tumors. In the present study the possible direct genotoxic effects of nicotine on DNA were investigated in human target cells of carcinogenesis in the upper aerodigestive tract.

Patients and methods

Human nasal mucosa, lymphatic tissue of the palatine tonsils, supraglottic epithelium of the larynx, and peripheral lymphocytes were exposed to rising concentrations of nicotine. DNA damage was investigated by alkaline single-cell microgel electrophoresis (Comet) assay. Cytotoxicity was assessed by trypan blue exclusion.

Results

Nicotine induced dose-dependent DNA damage in all cell types at low cytotoxic concentrations that allowed viabilities well above 80%. The lowest nicotine concentrations eliciting a significant increase in DNA migration were 1 mM for tonsillar cells and 0.25 mM for all other cell types.

Conclusion

Nicotine induces genotoxic effects in human target cells of carcinogenesis in the upper aerodigestive tract at relevant concentrations. Thus, nicotine may contribute directly to tumor initiation resulting from smoking.

Keywords

Nicotine Genotoxicity Tobacco smoke Comet assay Human mucosa Lymphocytes 

Notes

Danksagung

Teile der Untersuchungen wurden durch Forschungsfördermittel der Fa. Imperial Tobacco, Bristol, UK, unterstützt.

Interessenkonflikt:

Keine Angaben

Literatur

  1. 1.
    Arabi M (2004) Nicotinic infertility: assessing DNA and plasma membrane integrity of human spermatozoa. Andrologia 36: 305–310CrossRefPubMedGoogle Scholar
  2. 2.
    Argentin G, Cicchetti R (2004) Genotoxic and antiapoptotic effect of nicotine on human gingival fibroblasts. Toxicol Sci 79: 75–81CrossRefPubMedGoogle Scholar
  3. 3.
    Bao Z, He X-Y, Ding X, Prabhu S, Hong J-Y (2005) Metabolism of nicotine and cotinine by human cytochrome P450 2A13. Drug Metab Dispos 33: 258–261CrossRefPubMedGoogle Scholar
  4. 4.
    Cooke JP, Bitterman H (2004) Nicotine and angiogenesis: a new paradigm for tobacco-related diseases. Ann Med 36: 33–40CrossRefPubMedGoogle Scholar
  5. 5.
    Crowley-Weber CL, Dvorakova K, Crowley C, Bernstein H, Bernstein C, Garewal H, Payne CM (2003) Nicotine increases oxidative stress, activates NF-kappaB and GRP78, induces apoptosis and sensitizes cells to genotoxic/xenobiotic stresses by a multiple stress inducer, deoxycholate: relevance to colon carcinogenesis. Chem Biol Interact 145: 53–66CrossRefPubMedGoogle Scholar
  6. 6.
    Dietz A, Maier H (1999) Synkarzinogenese — Beruf und Krebs im Kopf-Hals-Bereich. HNO 47: 684–687CrossRefPubMedGoogle Scholar
  7. 7.
    Doolittle DJ, Winegar R, Lee CK, Caldwell WS, Hayes AW, deBethizy JD (1995) The genotoxic potential of nicotine and its major metabolites. Mutat Res 344: 95–102CrossRefPubMedGoogle Scholar
  8. 8.
    Europäische Union (2002) Einzelplan III: Kommisson, Haushaltsplan 2002 nach Politikbereichen. http://europa eu int/index_de htmGoogle Scholar
  9. 9.
    Harréus UA, Baumeister P, Wallner BC, Berghaus A, Kleinsasser NH (2005) Karzinogene und kokarzinogene Effekte von Metallen und Ethylalkohol in humanen Speicheldrüsenzellen. HNO 53: 155–162CrossRefPubMedGoogle Scholar
  10. 10.
    Hecht SS (1998) Biochemistry, biology, and carcinogenicity of tobacco-specific N-nitrosamines. Chem Res Toxicol 11: 559–603CrossRefPubMedGoogle Scholar
  11. 11.
    Hecht SS (2002) Human urinary carcinogen metabolites: biomarkers for investigating tobacco and cancer. Carcinogenesis 23: 907–922CrossRefPubMedGoogle Scholar
  12. 12.
    Hoffmann D, Brunnemann KD, Prokopczyk B, Djordjevic MV (1994) Tobacco-specific N-nitrosamines and Areca-derived N-nitrosamines: chemistry, biochemistry, carcinogenicity, and relevance to humans. J Toxicol Environ Health 41: 1–52PubMedGoogle Scholar
  13. 13.
    Itier V, Bertrand D (2001) Neuronal nicotinic receptors: from protein structure to function. FEBS Lett 504: 118–125CrossRefPubMedGoogle Scholar
  14. 14.
    Kleinsasser NH, Juchhoff J, Wallner BC et al. (2004) The use of mini-organ cultures of human upper aerodigestive tract epithelia in ecogenotoxicology. Mutat Res 561: 63–73PubMedGoogle Scholar
  15. 15.
    Kleinsasser NH, Kastenbauer ER, Wallner BC, Weissacher H, Harréus UA (2001) Genotoxizität von Phthalaten—Zur Diskussion über Weichmacher in Kinderspielzeug. HNO 49: 378–381CrossRefPubMedGoogle Scholar
  16. 16.
    Kleinsasser NH, Kastenbauer ER, Zieger S, Baluschko T, Wallner BC, Harréus UA (2003) Lagerung humaner nasaler Mukosa für die Einzelzell-Mikrogelelektrophorese. HNO 51: 134–139CrossRefPubMedGoogle Scholar
  17. 17.
    Kleinsasser NH, Wallner BC, Harréus UA, Zwickenpflug W, Richter E (2003) Genotoxic effects of myosmine in human lymphocytes and upper aerodigestive tract epithelial cells. Toxicology 192: 171–177CrossRefPubMedGoogle Scholar
  18. 18.
    Kuchenmeister F (1994) Etablierung und Erprobung einer Technik, die erlaubt, DNA-Schäden an einzelnen Nasenschleimhautzellen der Ratte und des Menschen nachzuweisen. Inauguraldissertation zur Erlangung des medizinischen Doktorgrades der Fakultät für Theoretische Medizin der Medizinischen Gesamtfakultät der Ruprecht-Karls-Universität HeidelbergGoogle Scholar
  19. 19.
    Lee CK, Fulp C, Bombick BR, Doolittle DJ (1996) Inhibition of mutagenicity of N-nitrosamines by tobacco smoke and its constituents. Mutat Res 367: 83–92CrossRefPubMedGoogle Scholar
  20. 20.
    Lee E, Oh E, Lee J, Sul D, Lee J (2004) Use of the tail moment of the lymphocytes to evaluate DNA damage in human biomonitoring studies. Toxicol Sci 81: 121–132CrossRefPubMedGoogle Scholar
  21. 21.
    Li XS, Wang HF, Shi JY, Wang XY, Liu YF, Li K, Lu XY, Wang JJ, Liu KX, Guo ZY (1996) Genotoxicity study on nicotine and nicotine-derived nitrosamine by accelerator mass spectrometry. Radiocarbon 38: 347–353Google Scholar
  22. 22.
    Minna JD (2003) Nicotine exposure and bronchial epithelial cell nicotinic acetylcholine receptor expression in the pathogenesis of lung cancer. J Clin Invest 111: 31–33CrossRefPubMedGoogle Scholar
  23. 23.
    Murphy SE, Heiblum R (1990) Effect of nicotine and tobacco-specific nitrosamines on the metabolism of N’-nitrosonornicotine and 4-methylnitrosamino)-1-(3-pyridyl)-1-butanone by rat oral tissue. Carcinogenesis 11: 1663–1666PubMedGoogle Scholar
  24. 24.
    Nakajima M, Kuroiwa Y, Yokoi T (2002) Interindividual differences in nicotine metabolism and genetic polymorphisms of human CYP2A6. Drug Metab Rev 34: 865–877CrossRefPubMedGoogle Scholar
  25. 25.
    Natori T, Sata M, Washida M, Hirata Y, Nagai R, Makuuchi M (2003) Nicotine enhances neovascularization and promotes tumor growth. Mol Cells 16: 143–146PubMedGoogle Scholar
  26. 26.
    Olive PL, Durand RE, Le Riche J, Olivotto IA, Jackson SM (1993) Gel electrophoresis of individual cells to quantify hypoxic fraction in human breast cancers. Cancer Res 53: 733–736Google Scholar
  27. 27.
    Pfaue D, Tisch M, Maier H (2003) Krebs durch Schnupftabak? HNO 51: 193–196CrossRefPubMedGoogle Scholar
  28. 28.
    Richter E, Scherer G (2004) Aktives und passives Rauchen. In: Marquardt H, Schäfer SG (Hrsg) Lehrbuch der Toxikologie, S 897–918. Wissenschaftliche Verlagsgesellschaft, StuttgartGoogle Scholar
  29. 29.
    Richter E, Tricker AR (1994) Nicotine inhibits the metabolic activation of the tobacco-specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone in rats. Carcinogenesis 15: 1061–1064PubMedGoogle Scholar
  30. 30.
    Richter E, Tricker AR (2002) Effect of nicotine, cotinine and phenethyl isothiocyanate on 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) metabolism in the Syrian golden hamster. Toxicology 179: 95–103CrossRefPubMedGoogle Scholar
  31. 31.
    Riebe M, Westphal K (1983) Studies on the induction of sister-chromatid exchanges in Chinese hamster ovary cells by various alkaloids. Mutat Res 124: 281–286CrossRefPubMedGoogle Scholar
  32. 32.
    Riebe M, Westphal K, Fortnagel P (1982) Mutagenicity testing, in bacterial test systems, of some constituents of tobacco. Mutat Res 101: 39–43CrossRefPubMedGoogle Scholar
  33. 33.
    Rodu B, Jansson C (2004) Smokeless tobacco and oral cancer: a review of the risks and determinants. Crit Rev Oral Biol Med 15: 252–263PubMedGoogle Scholar
  34. 34.
    Schuller HM, Plummer HK, Jull BA (2003) Receptor-mediated effects of nicotine and its nitrosated derivative NNK on pulmonary neuroendocrine cells. Anat Rec 270A: 51–58CrossRefGoogle Scholar
  35. 35.
    Schulze J, Schrader E, Foth H, Kahl GF, Richter E (1998) Effect of nicotine or cotinine on metabolism of 4-methylnitrosamino-1-(3-pyridyl)-1-butanone (NNK) in isolated rat lung and liver. Naunyn Schmiedebergs Arch Pharmacol 357: 344–350PubMedGoogle Scholar
  36. 36.
    Shigenaga MK, Trevor AJ, Castagnoli N (1987) Metabolism-dependent covalent binding of (S)-[5–3H]nicotine to liver and lung microsomal macromolecules. Drug Metab Dispos 16: 397–402Google Scholar
  37. 37.
    Shin VY, Wu WKK, Ye Y-N, So WHL, Koo MWL, Liu ESL, Luo J-C, Cho C-H (2004) Nicotine promotes gastric tumor growth and neovascularization by activating extracellular signal-regulated kinase and cyclooxygenase-2. Carcinogenesis 25: 2487–2495CrossRefPubMedGoogle Scholar
  38. 38.
    Szüts T, Olsson S, Lindquist NG, Ullberg S, Pilotti A, Enzell C (1978) Long-term fate of [14C]nicotine in the mouse: retention in the bronchi, melanin-containing tissues and urinary bladder wall. Toxicology 10: 207–220CrossRefPubMedGoogle Scholar
  39. 39.
    Tice RR, Agurell E, Anderson D et al. (2000) Single cell gel/comet assay: guidelines for in vitro and in vivo genetic toxicology testing. Environ Mol Mutagen 35: 206–221CrossRefPubMedGoogle Scholar
  40. 40.
    Trivedi AH, Dave BJ, Adhvaryu SG (1990) Assessment of genotoxicity of nicotine employing in vitro mammalian test system. Cancer Lett 54: 89–94CrossRefPubMedGoogle Scholar
  41. 41.
    Tyndale RF (2003) Genetics of alcohol and tobacco use in humans. Ann Med 35: 94–121CrossRefPubMedGoogle Scholar
  42. 42.
    Tyroller S, Zwickenpflug W, Richter E (2002) New sources of dietary myosmine uptake from cereals, fruits, vegetables and milk. J Agric Food Chem 50: 4909–4915CrossRefPubMedGoogle Scholar
  43. 43.
    Wallner BC, Harréus UA, Gamarra F, Sassen A, Kleinsasser NH (2005) Miniorgankulturen humaner nasaler Mukosa. Ein Modell für ökogenotoxikologische Untersuchungen. HNO, im DruckGoogle Scholar
  44. 44.
    Wang H, Tan W, Hao B, Miao X, Zhou G, He F, Lin D (2003) Substantial reduction in risk of lung adenocarcinoma associated with genetic polymorphism in CYP2A13, the most active cytochrome P450 for the metabolic activation of tobacco-specific carcinogen NNK. Cancer Res 63: 8057–8061Google Scholar
  45. 45.
    Ye YN, Liu ESL, Shin VY, Wu WKK, Luo JC, Cho CH (2004) Nicotine promoted colon cancer growth via epidermal growth factor receptor, c-Src, and 5-lipoxygenase-mediated signal pathway. J Pharmacol Exp Ther 308: 66–72CrossRefPubMedGoogle Scholar

Copyright information

© Springer Medizin Verlag 2005

Authors and Affiliations

  • N. H. Kleinsasser
    • 1
    • 4
    Email author
  • A. W. Sassen
    • 1
  • M. P. Semmler
    • 1
  • R. Staudenmaier
    • 1
  • U. A. Harréus
    • 2
  • E. Richter
    • 3
  1. 1.ÖkogenotoxikologieKlinik und Poliklinik für Hals-, Nasen- und Ohrenheilkunde der Universität Regensburg
  2. 2.Klinisch experimentelle OnkologieKlinik und Poliklinik für Hals-, Nasen- und Ohrenheilkunde der Ludwig-Maximilians-Universität München
  3. 3.Walther-Straub-Institut für Pharmakologie und ToxikologieLudwig-Maximilians-Universität München
  4. 4.Klinik und Poliklinik für Hals-, Nasen- und OhrenheilkundeUniversität RegensburgRegensburg

Personalised recommendations