HNO

, Volume 54, Issue 4, pp 258–266 | Cite as

Vergleich der Genexpressionsmuster humaner Chondrozyten und chondrogen differenzierter mesenchymaler Stammzellen für das Tissue-Engineering

  • U. R. Goessler
  • P. Bugert
  • K. Bieback
  • S. Bag
  • H. Sadick
  • H. Klüter
  • K. Hörmann
  • F. Riedel
Originalien

Zusammenfassung

Hintergrund

Tissue-Engineering stellt eine vielversprechende Methode zur Herstellung autologer Knorpeltransplantate für die rekonstruktive Chirurgie dar. Ein Problem hierbei ist die Dedifferenzierung der Chondrozyten.

Methoden

In der vorliegenden Studie wurde die Genexpression verschiedener Marker einerseits während der Dedifferenzierung humaner Chondrozyten (HC) aus Septumknorpel und andererseits während der chondrogenen Differenzierung von mesenchymalen Stammzellen (hMSC) aus Knochenmarkproben in Zellkultur mittels Microarrays analysiert.

Ergebnisse

Kollagen 1α1, 2α1, 3α1, 4α1, 11α1, Biglykan, Fibromodulin und Lumican wurden während der Dedifferenzierung der HC aktiviert, Kollagen 9α2, 9α3, 10α1 und Chondroadherin inaktiviert. Während der chondrogenen Differenzierung der MSC wurden die Gene für Kollagen 3α1, 9α2, 9α3, 10α1, 11α1 aktiviert, die für Kollagen 4α1 und Fibromodulin inaktiviert, sowie die Gene für Col 1α1, Biglykan und Chondroadherin konstant exprimiert.

Schlussfolgerung

Das Genprofil von chondrogen differenzierten Stammzellen entspricht hinsichtlich der untersuchten Marker dem von humanen differenzierten Chondrozyten. Kollagen 2α1, 9α2, 9α3, 10α1 könnten Marker für die Differenzierung von Knorpelgewebe sein, Col 1α1, 3α1 und 4α1, Biglykan, Fibromodulin und Lumican für die Dedifferenzierung.

Schlüsselwörter

Tissue-Engineering Autologe Knorpeltransplantate Rekonstruktive Chirurgie Dedifferenzierung Chondrozyten 

A comparison of the gene expression patterns of human chondrocytes and chondrogen differentiated mesenchymal stem cells for tissue engineering

Abstract

Background

Tissue engineering is a promising method for the generation of chondrogenic grafts for reconstructive surgery. In cultured chondrocytes, the dedifferentiation of cells seems unavoidable for multiplication.

Methods

In this study, we investigated the expression of distinct markers during the dedifferentiation of human chondrocytes (HC) harvested during septoplasty and human mesenchymal stem cells (hMSC) from cartilage biopsies in cell culture using the microarray technique.

Results

The genes for collagen 1α1, 2α1, 3α1, 4α1, 11α1, biglycan, fibromodulin and lumican were activated during the dedifferentiation of the HCs, collagen 9α2, 9α3, 10α1 and chondroadherin were inactivated. During chondrogenic differentiation of hMSCs, the genes for collagen 3α1, 9α2, 9α3, 10α1, 11α1 were activated, collagen 4α1 and fibromodulin inactivated and the genes for Col 1α1, biglycan und chondroadherin constantly expressed.

Conclusion

The genetic profile for the investigated markers in human chondrocytes generated from hMSCs resembles the profile in differentiated chondrocytes. Collagen 2α1, 9α2, 9α3, 10α1 could represent markers for the differentiation of chondrocytes, Col 1α1, 3α1 und 4α1, biglycan, fibromodulin and lumican markers for the dedifferentiation into a more fibroblastoid cell type.

Keywords

Tissue engineering Autologous cartilage transplantation Reconstructive surgery Dedifferentiation Chondrocytes 

Notes

Danksagung

Diese Untersuchung wurde gefördert durch einen „research grant“ (Nr 932817) der Fakultät für klinische Medizin Mannheim der Universität Heidelberg. Wir möchten Frau Petra Prohaska und Frau Susanne Kern für exzellente Unterstützung danken.

Interessenkonflikt:

Es besteht kein Interessenkonflikt. Der korrespondierende Autor versichert, dass keine Verbindungen mit einer Firma, deren Produkt in dem Artikel genannt ist, oder einer Firma, die ein Konkurrenzprodukt vertreibt, bestehen. Die Präsentation des Themas ist unabhängig und die Darstellung der Inhalte produktneutral.

Literatur

  1. 1.
    Benya PD, Shaffer JD (1982) Dedifferentiated chondrocytes reexpress the differentiated collagen phenotype when cultured in agarose gels. Cell 30: 215–224CrossRefPubMedGoogle Scholar
  2. 2.
    Bruder SP, Fink DJ, Caplan AI (1994) Mesenchymal stem cells in bone development, bone repair, and skeletal regeneration therapy. J Cell Biochem 56: 283–294CrossRefPubMedGoogle Scholar
  3. 3.
    Bucheler M, Haisch A (2003) Tissue engineering in otorhinolaryngology. DNA Cell Biol 22: 549–564CrossRefPubMedGoogle Scholar
  4. 4.
    Buckwalter JA, Glimcher MJ, Cooper RR, Recker R (1996) Bone biology. II: Formation, form, modeling, remodeling, and regulation of cell function. Instr Course Lect 45: 387–399PubMedGoogle Scholar
  5. 5.
    Buckwalter JA, Mankin HJ (1998) Articular cartilage: tissue design and chondrocyte-matrix interactions. Instr Course Lect 47: 477–486PubMedGoogle Scholar
  6. 6.
    Bugert P, Dugrillon A, Gunaydin A, Eichler H, Kluter H (2003) Messenger RNA profiling of human platelets by microarray hybridization. Thromb Haemost 90: 738–748PubMedGoogle Scholar
  7. 7.
    Eerola I, Salminen H, Lammi P et al. (1998) Type X collagen, a natural component of mouse articular cartilage: association with growth, aging, and osteoarthritis. Arthritis Rheum 41: 1287–1295CrossRefPubMedGoogle Scholar
  8. 8.
    Goessler U, Hörmann K, Riedel F (2004) Tissue engineering with chondrocytes and function of the extracellular matrix. Int J Mol Med 13: 505–513PubMedGoogle Scholar
  9. 9.
    Goessler UR, Bugert P, Bieback K et al. (2004) Expression of collagen and fiber-associated proteins in human septal cartilage during in vitro dedifferentiation. Int J Mol Med 14: 1015–1022PubMedGoogle Scholar
  10. 10.
    Gruber R, Sittinger M, Bujia J (1996) Untersuchungen zur in vitro Kultivierung von Humanchondrozyten bei Einsatz FCS-freier Zuchtmedien: Minimierung des möglichen Risikos einer Infektion mit Erregern von Prionen-Erkrankungen. Laryngorhinootologie 75: 105–108PubMedGoogle Scholar
  11. 11.
    Haisch A, Klaring S, Groger A, Gebert C, Sittinger M (2002) A tissue-engineering model for the manufacture of auricular-shaped cartilage implants. Eur Arch Otorhinolaryngol 259: 316–321PubMedGoogle Scholar
  12. 12.
    Horch RE, Bannasch H, Kopp J, Andree C, Stark GB (1998) Single-cell suspensions of cultured human keratinocytes in fibrin-glue reconstitute the epidermis. Cell Transplant 7: 309–317CrossRefPubMedGoogle Scholar
  13. 13.
    Johnstone B, Hering TM, Caplan AI, Goldberg VM, Yoo JU (1998) In vitro chondrogenesis of bone marrow-derived mesenchymal progenitor cells. Exp Cell Res 238: 265–272CrossRefPubMedGoogle Scholar
  14. 14.
    Kaps C, Fuchs S, Endres M et al. (2004) Molekulare Charakterisierung von gezüchteten humanen dreidimensionalen Chondrocytentransplantaten. 33: 76–85Google Scholar
  15. 15.
    Langer R, Vacanti JP (1993) Tissue engineering. Science 260: 920–926PubMedGoogle Scholar
  16. 16.
    Linsenmayer TF, Eavey RD, Schmid TM (1988) Type X collagen: a hypertrophic cartilage-specific molecule. Pathol Immunopathol Res 7: 14–19PubMedGoogle Scholar
  17. 17.
    Liu G, Hu YY, Zhao JN, Wu SJ, Xiong Z, Lu R (2004) Effect of type I collagen on the adhesion, proliferation, and osteoblastic gene expression of bone marrow-derived mesenchymal stem cells. Chin J Traumatol 7: 358–362PubMedGoogle Scholar
  18. 18.
    Liu X, Wu H, Byrne M, Krane S, Jaenisch R (1997) Type III collagen is crucial for collagen I fibrillogenesis and for normal cardiovascular development. Proc Natl Acad Sci U S A 94: 1852–1856CrossRefPubMedGoogle Scholar
  19. 19.
    Long MW, Robinson JA, Ashcraft EA, Mann KG (1995) Regulation of human bone marrow-derived osteoprogenitor cells by osteogenic growth factors. J Clin Invest 95: 881–887PubMedGoogle Scholar
  20. 20.
    Lowenheim H, Dazert S, Bucheler M, Guntinas-Lichius O (2003) Regenerative medicine/cellular engineering for diseases of the head and neck. DNA Cell Biol 22: 547–548CrossRefPubMedGoogle Scholar
  21. 21.
    Mackay AM, Beck SC, Murphy JM, Barry FP, Chichester CO, Pittenger MF (1998) Chondrogenic differentiation of cultured human mesenchymal stem cells from marrow. Tissue Eng 4: 415–428PubMedGoogle Scholar
  22. 22.
    Maroudas A, Bayliss MT, Venn MF (1980) Further studies on the composition of human femoral head cartilage. Ann Rheum Dis 39: 514–523PubMedGoogle Scholar
  23. 23.
    Mayne R, Wiedemann H, Irwin MH et al. (1984) Monoclonal antibodies against chicken type IV and V collagens: electron microscopic mapping of the epitopes after rotary shadowing. J Cell Biol 98: 1637–1644CrossRefPubMedGoogle Scholar
  24. 24.
    Muir H (1995) The chondrocyte, architect of cartilage. Biomechanics, structure, function and molecular biology of cartilage matrix macromolecules. Bioessays 17: 1039–1048CrossRefPubMedGoogle Scholar
  25. 25.
    Naumann A, Dennis JE, Awadallah A et al. (2002) Immunochemical and mechanical characterization of cartilage subtypes in rabbit. J Histochem Cytochem 50: 1049–1058PubMedGoogle Scholar
  26. 26.
    Naumann A, Rotter N, Bujia J, Aigner J (1998) Tissue engineering of autologous cartilage transplants for rhinology. Am J Rhinol 12: 59–63PubMedGoogle Scholar
  27. 27.
    Neame PJ, Sommarin Y, Boynton RE, Heinegard D (1994) The structure of a 38-kDa leucine-rich protein (chondroadherin) isolated from bovine cartilage. J Biol Chem 269: 21547–21554PubMedGoogle Scholar
  28. 28.
    Quarto R, Thomas D, Liang CT (1995) Bone progenitor cell deficits and the age-associated decline in bone repair capacity. Calcif Tissue Int 56: 123–129CrossRefPubMedGoogle Scholar
  29. 29.
    Ringe J, Haupl T, Sittinger M (2003) Mesenchymale Stammzellen für das tissue engineering von Knochen und Knorpel. Med Klin (Munich) 98 Suppl 2: 35–40Google Scholar
  30. 30.
    Rodriguez A, Cao YL, Ibarra C et al. (1999) Characteristics of cartilage engineered from human pediatric auricular cartilage. Plast Reconstr Surg 103: 1111–1119PubMedGoogle Scholar
  31. 31.
    Schaefer D, Martin I, Jundt G et al. (2002) Tissue-engineered composites for the repair of large osteochondral defects. Arthritis Rheum 46: 2524–2534CrossRefPubMedGoogle Scholar
  32. 32.
    Schaefer D, Martin I, Shastri P et al. (2000) In vitro generation of osteochondral composites. Biomaterials 21: 2599–2606CrossRefPubMedGoogle Scholar
  33. 33.
    Schmid TM, Linsenmayer TF (1985) Immunohistochemical localization of short chain cartilage collagen (type X) in avian tissues. J Cell Biol 100: 598–605CrossRefPubMedGoogle Scholar
  34. 34.
    Schnabel M, Marlovits S, Eckhoff G et al. (2002) Dedifferentiation-associated changes in morphology and gene expression in primary human articular chondrocytes in cell culture. Osteoarthritis Cartilage 10: 62–70CrossRefPubMedGoogle Scholar
  35. 35.
    Shakibaei M, Merker HJ (1999) Beta1-integrins in the cartilage matrix. Cell Tissue Res 296: 565–573CrossRefPubMedGoogle Scholar
  36. 36.
    Sittinger M (1995) [Tissue engineering: artificial tissue replacement containing vital components]. Laryngorhinootologie 74: 695–659PubMedGoogle Scholar
  37. 37.
    Sittinger M, Bujia J, Rotter N, Reitzel D, Minuth WW, Burmester GR (1996) Tissue engineering and autologous transplant formation: practical approaches with resorbable biomaterials and new cell culture techniques. Biomaterials 17: 237–242CrossRefPubMedGoogle Scholar
  38. 38.
    Urist MR, DeLange RJ, Finerman GA (1983) Bone cell differentiation and growth factors. Science 220: 680–686PubMedGoogle Scholar
  39. 39.
    Vacanti JP, Langer R (1999) Tissue engineering: the design and fabrication of living replacement devices for surgical reconstruction and transplantation. Lancet 354 Suppl 1: SI32–34Google Scholar
  40. 40.
    Vornehm SI, Dudhia J, Von der Mark K, Aigner T (1996) Expression of collagen types IX and XI and other major cartilage matrix components by human fetal chondrocytes in vivo. Matrix Biol 15: 91–98CrossRefPubMedGoogle Scholar
  41. 41.
    Walgenbach KJ, Voigt M, Riabikhin AW et al. (2001) Tissue engineering in plastic reconstructive surgery. Anat Rec 263: 372–378CrossRefPubMedGoogle Scholar
  42. 42.
    Wegrowski Y, Pillarisetti J, Danielson KG, Suzuki S, Iozzo RV (1995) The murine biglycan: complete cDNA cloning, genomic organization, promoter function, and expression. Genomics 30: 8-17CrossRefPubMedGoogle Scholar
  43. 43.
    Younger EM, Chapman MW (1989) Morbidity at bone graft donor sites. J Orthop Trauma 3: 192–195PubMedGoogle Scholar

Copyright information

© Springer Medizin Verlag 2005

Authors and Affiliations

  • U. R. Goessler
    • 1
    • 3
  • P. Bugert
    • 2
  • K. Bieback
    • 2
  • S. Bag
    • 1
  • H. Sadick
    • 1
  • H. Klüter
    • 2
  • K. Hörmann
    • 1
  • F. Riedel
    • 1
  1. 1.Universitäts-HNO-Klinik Mannheim
  2. 2.Institut für Transfusionsmedizin und ImmunologieDeutsches Rotes Kreuz — Blutspendedienst Baden-Württemberg/Hessen, Fakultät für Klinische Medizin Mannheim der Universität Heidelberg
  3. 3.Universitäts-HNO-Klinik MannheimMannheim

Personalised recommendations