Advertisement

Der Hautarzt

, Volume 70, Issue 12, pp 926–933 | Cite as

Grundlagen der Pharmakologie biologischer Arzneimittel

  • Johannes WohlrabEmail author
Leitthema
  • 61 Downloads

Zusammenfassung

Biologische Arzneimittel sind die Gesamtheit aller Arzneistoffe oder Präparationen aus Arzneistoffen, die biologischen Ursprungs sind oder aus biologischem Material hergestellt werden. Das Spektrum biologischer Arzneimittel ist umfangreich und schließt aus biologischem Material isolierte Stoffe, rekombinante RNA(Ribonukleinsäure)-Moleküle, Proteine sowie Vollantikörper, Antikörperfragmente oder Antikörper-Drug-Konjugate ein. Die Besonderheiten der molekularen Eigenschaften und Funktionen biologischer Arzneistoffe bedingen einen hochkomplexen, variablen Aufbau. Aufgrund der Spezifität beabsichtigter pharmakodynamischer Effekte auf ein komplexes biologisches Regulationssystem sind Besonderheiten bezüglich unerwünschter Effekte, Pharmakokinetik und Sicherheit sowohl regulatorisch als auch klinisch zu beachten.

Schlüsselwörter

Biologika Biologische Arzneistoffe Therapeutische Antikörper Fusionsproteine Peptide 

Basics of the pharmacology of biopharmaceuticals

Abstract

Biopharmaceuticals are pharmaceutical drug products or preparations of pharmaceutical drugs that are of biological origin or are manufactured from biological material. The spectrum of biological drugs is extensive and includes substances isolated from biological material, recombinant RNA molecules, proteins as well as full antibodies, antibody fragments or antibody–drug conjugates. The special features of the molecular properties and functions of biopharmaceuticals require a highly complex, variable structure. Due to the specificity of intended pharmacodynamic effects on a complex biological regulatory system, particularities regarding undesired effects, pharmacokinetics, and safety have to be considered both regulatory and clinical.

Keywords

Biologics Biological products Therapeutic antibodies Fusion proteins Peptides 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

J. Wohlrab gibt an, dass er Honorare für Vorträge oder/und Beratungsleistungen bzw. Sponsoring für wissenschaftliche Projekte oder/und klinische Studien von folgenden Firmen erhalten hat, die relevante Präparate vertreiben: AbbVie, Almirall, Baxalta, Biogen, Celgene, Evolva, Galderma, GSK, Hexal, Janssen-Cilag, Leo, Lilly, Medac, MSD, Novartis, Pfizer, Sanofi, UCB.

Für diesen Beitrag wurden vom Autor keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Literatur

  1. 1.
    Heymann WR (2005) Side effects of the biologics. J Am Acad Dermatol 53:692–693CrossRefGoogle Scholar
  2. 2.
    Succaria F, Bhawan J (2017) Cutaneous side-effects of biologics in immune-mediated disorders: A histopathological perspective. J Dermatol 44:243–250CrossRefGoogle Scholar
  3. 3.
    Yao Y, Ravn Jorgensen AH, Thomsen SF (2019) Biologics for chronic inflammatory skin diseases: An update for the clinician. J Dermatolog Treat.  https://doi.org/10.1080/09546634.2019.1589643 CrossRefPubMedGoogle Scholar
  4. 4.
    Ryckaert S, Pardon E, Steyaert J, Callewaert N (2010) Isolation of antigen-binding camelid heavy chain antibody fragments (nanobodies) from an immune library displayed on the surface of pichia pastoris. J Biotechnol 145:93–98CrossRefGoogle Scholar
  5. 5.
    Toleikis L, Frenzel A (2012) Cloning single-chain antibody fragments (ScFv) from hyrbidoma cells. Methods Mol Biol 907:59–71CrossRefGoogle Scholar
  6. 6.
    Vaks L, Benhar I (2014) Production of stabilized scfv antibody fragments in the e. Coli bacterial cytoplasm. Methods Mol Biol 1060:171–184CrossRefGoogle Scholar
  7. 7.
    Chapman AP (2002) Pegylated antibodies and antibody fragments for improved therapy: A review. Adv Drug Deliv Rev 54:531–545CrossRefGoogle Scholar
  8. 8.
    Dahlen E, Veitonmaki N, Norlen P (2018) Bispecific antibodies in cancer immunotherapy. Ther Adv Vaccines Immunother 6:3–17CrossRefGoogle Scholar
  9. 9.
    Wang Q, Chen Y, Park J, Liu X, Hu Y, Wang T, McFarland K, Betenbaugh MJ (2019) Design and production of bispecific antibodies. Antibodies 8:antib8030043Google Scholar
  10. 10.
    Pan W, Cai T, Tang S, Zhou L, Dong J (2018) Trifunctional metasurfaces: concept and characterizations. Opt Express 26:17447–17457CrossRefGoogle Scholar
  11. 11.
    Flemming A (2019) Trifunctional antibodies unleash nk cells. Nat Rev Cancer 19:369CrossRefGoogle Scholar
  12. 12.
    Hedrich WD, Fandy TE, Ashour HM, Wang H, Hassan HE (2018) Antibody-drug conjugates: pharmacokinetic/pharmacodynamic modeling, preclinical characterization, clinical studies, and lessons learned. Clin Pharmacokinet 57:687–703CrossRefGoogle Scholar
  13. 13.
    IQWIG-Bericht Nr. 614: Brentuximab vedotin (kutanes T‑Zell-Lymphom) Bewertung gemäß § 35a Abs. 1 Satz 11 SGB V. https://www.g-ba.de/downloads/92-975-2268/2018-01-15_Bewertung-Therapiekosten-Patientenzahlen-IQWiG_Brentuximab_Vedotin-D-340.pdf, 2018. Zugegriffen: 25.09.19
  14. 14.
    O’Brien J, Hayder H, Zayed Y, Peng C (2018) Overview of microrna biogenesis, mechanisms of actions, and circulation. Front Endocrinol 9:402CrossRefGoogle Scholar
  15. 15.
    Hayes J, Peruzzi PP, Lawler S (2014) Micrornas in cancer: biomarkers, functions and therapy. Trends Mol Med 20:460–469CrossRefGoogle Scholar
  16. 16.
    Ross K (2018) Towards topical microrna-directed therapy for epidermal disorders. J Control Release 269:136–147CrossRefGoogle Scholar
  17. 17.
    Doevendans E, Schellekens H (2019) Immunogenicity of innovative and biosimilar monoclonal antibodies. Antibodies 8:antib8010021CrossRefGoogle Scholar
  18. 18.
    Hindryckx P, Novak G, Vande Casteele N, Khanna R, Laukens D, Jairath V, Feagan BG (2017) Incidence, prevention and management of anti-drug antibodies against therapeutic antibodies in inflammatory bowel disease: A practical overview. Drugs 77:363–377CrossRefGoogle Scholar
  19. 19.
    Thomas LW, Lee EB, Wu JJ (2019) Systematic review of anti-drug antibodies of il-17 inhibitors for psoriasis. J Dermatolog Treat 30:110–116CrossRefGoogle Scholar
  20. 20.
    WHO (2011) International Nonproprietary Names (INN) for biological and biotechnological substances. https://www.who.int/medicines/services/inn/BioRev2011.pdf. Zugegriffen: 25.09.19Google Scholar
  21. 21.
    Hayakawa T (1999) science of evaluating the characteristics, quality and safety of biotechnological products: Rdna-derived products, cell culture technology-derived products, gene therapy products, cellular therapy products, and transgenic animal-derived protein products and cellular products. Kokuritsu Iyakuhin Shokuhin Eisei Kenkyusho Hokoku 117:1–38Google Scholar
  22. 22.
    EEC note for guidance (1990) Production and quality control of cytokine products derived by biotechnological processes. Ad hoc working party on biotechnology/pharmacy. Pharmacol Toxicol 67:353–358Google Scholar
  23. 23.
    Note for guidance (1991) Production and quality control of cytokine products derived by biotechnological processes. Committee for proprietary medicinal products: Ad hoc working party on biotechnology/pharmacy and working party on safety medicines. Biologicals 19:125–131CrossRefGoogle Scholar
  24. 24.
    International conference on harmonisation (1998) guidance on quality of biotechnological/biological products: Derivation and characterization of cell substrates used for production of biotechnological/biological products; availability. Notice. Food and drug administration, hhs. Fed Regist 63:50244–50249Google Scholar
  25. 25.
    Quality of biotechnological products (1998) Derivation and characterisation of cell substrates used for production of biotechnological/biological products. Ich harmonised tripartite guideline. Dev Biol Stand 93:223–234Google Scholar
  26. 26.
    Quality of biotechnological products (1998) Analysis of the expression construct in cell lines used for production of r‑DNA derived protein products. Ich harmonised tripartite guideline. Dev Biol Stand 93:205–208Google Scholar
  27. 27.
    Quality of biotechnological products (1998) Viral safety evaluation of biotechnology products derived from cell lines of human or animal origin. Ich harmonised tripartite guideline. Dev Biol Stand 93:177–201Google Scholar
  28. 28.
    Quality of biotechnological products (1998) Stability testing of biotechnological/biological products. Annex to the ich harmonised tripartite guideline for the stability testing of new drug substances and products. Dev Biol Stand 93:211–219Google Scholar
  29. 29.
    van Gerven J, Bonelli M (2018) Commentary on the ema guideline on strategies to identify and mitigate risks for first-in-human and early clinical trials with investigational medicinal products. Br J Clin Pharmacol 84:1401–1409CrossRefGoogle Scholar
  30. 30.
    Yang Z, Wang H, Salcedo TW, Suchard SJ, Xie JH, Schneeweis LA, Fleener CA, Calore JD, Shi R, Zhang SX, Rodrigues AD, Car BD, Marathe PH, Nadler SG (2015) Integrated pharmacokinetic/pharmacodynamic analysis for determining the minimal anticipated biological effect level of a novel anti-cd28 receptor antagonist bms-931699. J Pharmacol Exp Ther 355:506–515CrossRefGoogle Scholar
  31. 31.
    Chavez JC, Jain MD, Kharfan-Dabaja MA (2019) Cytokine release syndrome and neurologic toxicities associated with chimeric antigen receptor t‑cell therapy: A comprehensive review of emerging grading models. Hematol Oncol Stem Cell Ther 3876.  https://doi.org/10.1016/j.hemonc.2019.05.005
  32. 32.
    Wohlrab J (2015) Pharmacokinetic characteristics of therapeutic antibodies. J Dtsch Dermatol Ges 13:530–534PubMedGoogle Scholar
  33. 33.
    Toon S (1996) The relevance of pharmacokinetics in the development of biotechnology products. Eur J Drug Metab Pharmacokinet 21:93–103CrossRefGoogle Scholar
  34. 34.
    Petitcollin A, Bensalem A, Verdier MC, Tron C, Lemaitre F, Paintaud G, Bellissant E, Ternant D (2019) Modelling of the time-varying pharmacokinetics of therapeutic monoclonal antibodies: a literature review. Clin Pharmacokinet.  https://doi.org/10.1007/s40262-019-00816-7 CrossRefGoogle Scholar
  35. 35.
    Ryman JT, Meibohm B (2017) Pharmacokinetics of monoclonal antibodies. CPT Pharmacometrics Syst Pharmacol 6:576–588CrossRefGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2019

Authors and Affiliations

  1. 1.Universitätsklinik und Poliklinik für Dermatologie und VenerologieMartin-Luther-Universität Halle-WittenbergHalle (Saale)Deutschland
  2. 2.Institut für angewandte DermatopharmazieMartin-Luther-Universität Halle-WittenbergHalle (Saale)Deutschland

Personalised recommendations