Advertisement

Bedeutung des follikulären Penetrationswegs für den Wirkstofftransport mittels Nanocarriern

  • J. LademannEmail author
  • H. Richter
  • S. Schanzer
  • M. C. Meinke
  • M. E. Darvin
  • J. Schleusener
  • V. Carrer
  • P. Breuckmann
  • A. Patzelt
Leitthema
  • 19 Downloads

Zusammenfassung

Hintergrund

Der Haarfollikel stellt einen bedeutenden Penetrationsweg für topisch applizierte Substanzen dar.

Fragestellung

Die perkutane Absorption von bestimmten Substanzen kann durch die Beteiligung der Haarfollikel deutlich gesteigert und beschleunigt werden. Ferner haben Nanopartikel die Eigenschaft, besonders tief und effektiv in die Haarfollikel hinein zu penetrieren.

Material und Methoden

Dies bietet die Möglichkeit, den Wirkstofftransport für topisch applizierte Substanzen zu optimieren, indem die Nanocarrier allein als Transporter für die Wirkstoffe in den Haarfollikel fungieren. Innerhalb des Haarfollikels muss nach erfolgter Penetration eine Freisetzung des Wirkstoffs vom Nanocarrier erfolgen. Dies kann durch verschiedene Mechanismen getriggert werden.

Ergebnisse

Die freigesetzten Nanocarrier können somit unabhängig vom Nanopartikel in das den Haarfollikel umgebende lebende Gewebe übergehen. Mithilfe dieser innovativen Strategie kann die Bioverfügbarkeit von topisch applizierten Substanzen deutlich verbessert werden.

Schlussfolgerung

Ein Transport von Wirkstoffen in die Haarfollikel mithilfe von Partikeln und die dortige Wirkstofffreisetzung stellen eine sehr effektive neue Methode dar, Wirkstoffe durch die Hautbarriere zu transportieren.

Schlüsselwörter

Haut Haarfollikel Wirkstoffapplikation Massage Getriggerte Freisetzung 

Follicular penetration of nanocarriers is an important penetration pathway for topically applied drugs

Abstract

Background

The hair follicle represents a significant penetration route for topically applied substances.

Issue

The percutaneous absorption of substances can be significantly increased and accelerated by the involvement of hair follicles. In addition, nanoparticles have the characteristic to penetrate deeply and effectively into the hair follicles.

Materials and methods

An optimization of drug delivery for topically applied substances is possible if the nanoparticles act solely as a carrier to transport active ingredients into the hair follicle. Once the nanocarrier has penetrated into the hair follicle, the active substance must be released there. This can be triggered by various mechanisms.

Results

The released drug can thus pass into the living tissue surrounding the hair follicle independently. With the help of this innovative strategy, the bioavailability of topically applied substances can be significantly improved.

Conclusion

The transport of active ingredients into the hair follicles with the help of particles and the release of active substances there is a very effective new method for transporting active substances through the skin barrier.

Keywords

Skin Hair follicles Drug application Massage Triggered release 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

J. Lademann, H. Richter, S. Schanzer, M.C. Meinke, M.E. Darvin, J. Schleusener, V. Carrer, P. Breuckmann und A. Patzelt geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Literatur

  1. 1.
    Abd E, Roberts MS, Grice JE (2016) A comparison of the penetration and permeation of caffeine into and through human epidermis after application in various vesicle formulations. Skin Pharmacol Physiol 29:24–30CrossRefGoogle Scholar
  2. 2.
    Anderson C, Andersson T, Molander M (1991) Ethanol absorption across human skin measured by in vivo microdialysis technique. Acta Derm Venereol 71:389–393PubMedGoogle Scholar
  3. 3.
    Ascencio SM, Choe C, Meinke MC, Muller RH, Maksimov GV, Wigger-Alberti W, Lademann J, Darvin ME (2016) Confocal Raman microscopy and multivariate statistical analysis for determination of different penetration abilities of caffeine and propylene glycol applied simultaneously in a mixture on porcine skin ex vivo. Eur J Pharm Biopharm 104:51–58CrossRefGoogle Scholar
  4. 4.
    Barbero AM, Frasch HF (2006) Transcellular route of diffusion through stratum corneum: results from finite element models. J Pharm Sci 95:2186–2194CrossRefGoogle Scholar
  5. 5.
    Choe C, Lademann J, Darvin ME (2015) Analysis of human and porcine skin in vivo/ex vivo for penetration of selected oils by confocal Raman microscopy. Skin Pharmacol Physiol 28:318–330CrossRefGoogle Scholar
  6. 6.
    Choe C, Schleusener J, Lademann J, Darvin ME (2018) Age related depth profiles of human stratum Corneum barrier-related molecular parameters by confocal Raman microscopy in vivo. Mech Ageing Dev 172:6–12CrossRefGoogle Scholar
  7. 7.
    Choe C, Schleusener J, Lademann J, Darvin ME (2018) Human skin in vivo has a higher skin barrier function than porcine skin ex vivo-comprehensive Raman microscopic study of the stratum corneum. J Biophotonics.  https://doi.org/10.1002/jbio.201700355 CrossRefPubMedGoogle Scholar
  8. 8.
    Choe C, Schleusener J, Lademann J, Darvin ME (2017) In vivo confocal Raman microscopic determination of depth profiles of the stratum corneum lipid organization influenced by application of various oils. J Dermatol Sci 87:183–191CrossRefGoogle Scholar
  9. 9.
    Choe CS, Lademann J, Darvin ME (2016) A depth-dependent profile of the lipid conformation and lateral packing order of the stratum corneum in vivo measured using Raman microscopy. Analyst 141:1981–1987CrossRefGoogle Scholar
  10. 10.
    Choe CS, Lademann J, Darvin ME (2014) Gaussian-function-based deconvolution method to determine the penetration ability of petrolatum oil into in vivo human skin using confocal Raman microscopy. Laser Phys.  https://doi.org/10.1088/1054-660x/24/10/105601 CrossRefGoogle Scholar
  11. 11.
    de Sousa IP, Bernkop-Schnurch A (2014) Pre-systemic metabolism of orally administered drugs and strategies to overcome it. J Control Release 192:301–309CrossRefGoogle Scholar
  12. 12.
    Dey S, Rothe H, Page L, O’Connor R, Farahmand S, Toner F, Marsh R, Wehmeyer K, Zhou SY (2015) An in vitro skin penetration model for compromised skin: estimating penetration of polyethylene glycol [C-14]-PEG-7 phosphate. Skin Pharmacol Physiol 28:12–21CrossRefGoogle Scholar
  13. 13.
    Feldmann RJ, Maibach HI (1967) Regional variation in percutaneous penetration of 14C cortisol in man. J Invest Dermatol 48:181–183CrossRefGoogle Scholar
  14. 14.
    Franz TJ (1975) Percutaneous absorption on the relevance of in vitro data. J Invest Dermatol 64:190–195CrossRefGoogle Scholar
  15. 15.
    Hamada H, Liljelind I, Bruze M, Engfeldt M, Isaksson M, Jonsson B, Tinnerberg H, Lindh C, Axelsson S, Zimerson E (2018) Assessment of dermal uptake of diphenylmethane-4,4′-diisocyanate using tape stripping and biological monitoring. Eur J Dermatol 28:143–148PubMedGoogle Scholar
  16. 16.
    Holmgaard R, Nielsen JB, Benfeldt E (2010) Microdialysis sampling for investigations of bioavailability and bioequivalence of topically administered drugs: current state and future perspectives. Skin Pharmacol Physiol 23:225–243CrossRefGoogle Scholar
  17. 17.
    Kumar L, Verma S, Singh M, Chalotra T, Utreja P (2018) Advanced drug delivery systems for transdermal delivery of non-steroidal anti-inflammatory drugs: a review. Curr Drug Deliv 15:1087–1099CrossRefGoogle Scholar
  18. 18.
    Lademann J, Jacobi U, Surber C, Weigmann HJ, Fluhr JW (2009) The tape stripping procedure—evaluation of some critical parameters. Eur J Pharm Biopharm 72:317–323CrossRefGoogle Scholar
  19. 19.
    Lademann J, Meinke MC, Schanzer S, Richter H, Darvin ME, Haag SF, Fluhr JW, Weigmann HJ, Sterry W, Patzelt A (2012) In vivo methods for the analysis of the penetration of topically applied substances in and through the skin barrier. Int J Cosmet Sci 34:551–559CrossRefGoogle Scholar
  20. 20.
    Lademann J, Patzelt A, Schanzer S, Richter H, Gross I, Menting KH, Frazier L, Sterry W, Antoniou C (2011) Decontamination of the skin with absorbing materials. Skin Pharmacol Physiol 24:87–92CrossRefGoogle Scholar
  21. 21.
    Lademann J, Weigmann HJ, Rickmeyer C, Barthelmes H, Schaefer H, Mueller G, Sterry W (1999) Penetration of titanium dioxide microparticles in a sunscreen formulation into the horny layer and the follicular orifice. Skin Pharmacol Appl Skin Physiol 12:247–256CrossRefGoogle Scholar
  22. 22.
    Meinke MC, Schanzer S, Richter H, Rippke F, Filbry A, Bohnsack K, Patzelt A, Lademann J (2016) Prevention of cutaneous penetration and CD1c+uptake of pollen allergens by a barrier-enhancing formulation. Skin Pharmacol Physiol 29:71–75CrossRefGoogle Scholar
  23. 23.
    Otberg N, Patzelt A, Rasulev U, Hagemeister T, Linscheid M, Sinkgraven R, Sterry W, Lademann J (2008) The role of hair follicles in the percutaneous absorption of caffeine. Br J Clin Pharmacol 65:488–492CrossRefGoogle Scholar
  24. 24.
    Patzelt A, Lademann J (2013) Drug delivery to hair follicles. Expert Opin Drug Deliv 10:787–797CrossRefGoogle Scholar
  25. 25.
    Pelchrzim R, Weigmann H, Schaefer H, Lincheid M, Shah VP, Sterry W, Lademann J (2004) Determination of the formation of the stratum corneum reservoir for two different corticosteroid formulations using tape stripping combined with UV/VIS spectroscopy. J Dtsch Dermatol Ges 11:914–919CrossRefGoogle Scholar
  26. 26.
    Proksch E, Brandner JM, Jensen JM (2008) The skin: an indispensable barrier. Exp Dermatol 17:1063–1072CrossRefGoogle Scholar
  27. 27.
    van de Sandt JJM, van Burgsteden JA, Cage S, Carmichael PL, Dick I, Kenyon S, Korinth G, Larese F, Limasset JC, Maas WJM, Montomoli L, Nielsen JB, Payan JP, Robinson E, Sartorelli P, Schaller KH, Wilkinson SC, Williams FM (2004) In vitro predictions of skin absorption of caffeine, testosterone, and benzoic acid: a multi-centre comparison study. Regul Toxicol Pharmacol 39:271–281CrossRefGoogle Scholar
  28. 28.
    van Smeden J, Janssens M, Gooris GS, Bouwstra JA (2014) The important role of stratum corneum lipids for the cutaneous barrier function. Biochim Biophys Acta 1841:295–313CrossRefGoogle Scholar
  29. 29.
    Veryser L, Boonen J, Taevernier L, Guillaume J, Risseeuw M, Shah SNH, Roche N, Van Calenbergh S, De Spiegeleer B (2015) The influence of the acyl chain on the transdermal penetration-enhancing effect of synthetic phytoceramides. Skin Pharmacol Physiol 28:124–136CrossRefGoogle Scholar
  30. 30.
    Vieille-Petit A, Blickenstaff N, Coman G, Maibach H (2015) Metrics and clinical relevance of percutaneous penetration and lateral spreading. Skin Pharmacol Physiol 28:57–64CrossRefGoogle Scholar
  31. 31.
    Wilkinson SC, Maas WJM, Nielsen JB, Greaves LC, van de Sandt JJM, Williams FM (2006) Interactions of skin thickness and physicochemical properties of test compounds in percutaneous penetration studies. Int Arch Occup Environ Health 79:405–413CrossRefGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2019

Authors and Affiliations

  • J. Lademann
    • 1
    Email author
  • H. Richter
    • 1
  • S. Schanzer
    • 1
  • M. C. Meinke
    • 1
  • M. E. Darvin
    • 1
  • J. Schleusener
    • 1
  • V. Carrer
    • 1
    • 2
  • P. Breuckmann
    • 1
  • A. Patzelt
    • 1
  1. 1.Charité – Universitätsmedizin BerlinKlinik für Dermatologie, Venerologie und Allergologie, HautphysiologieBerlinDeutschland
  2. 2.Institut für Angewandte Chemie KatalonienBereich für Chemische TechnologienBarcelonaSpanien

Personalised recommendations