Advertisement

Der Hautarzt

, Volume 67, Issue 2, pp 107–111 | Cite as

Epidermale Alternsprozesse und Anti-Aging-Strategien

Leitthema

Zusammenfassung

Epitheliale Seneszenz ist ein komplexer Vorgang, der durch intrinsische und extrinsische (z. B. UV-/IR-Licht, Tabakrauch) Faktoren bedingt wird und im Kontext mit Alternsvorgängen insbesondere des Koriums und der Subkutis gesehen werden muss. Offensichtlich sind morphologische Veränderungen in Form von epithelialer Atrophie, Strukturänderungen der Basalmembran sowie Abnahme der Anzahl von Melanozyten und Langerhans-Zellen. Als Zeichen der zellulären Seneszenz gelten eine reduzierte proliferative Aktivität von Keratinozyten, eine Kumulation von keratinozytären Dysplasien, diverse Mutationen (z. B. c-Fos/c-Jun, STAT3, FoxO1) sowie multiple metabolische Aberrationen (z. B. Lipidmetabolismus, Bildung von „advanced glycation endproducts“, Aminosäurestoffwechsel). Daraus resultieren funktionelle Veränderungen, die insbesondere die physikalische (Lipiddefizit, Wasserverteilungsstörung, Mangel an hygroskopischen Substanzen), chemische (pH-Verhältnisse, Sauerstoffradikale) und immunologische Barriere betreffen. Zur Prophylaxe werden v. a. barriereprotektive Pflegepräparate, antioxidative Wirksubstanzen (z. B. Vitamin C, B3, E, Polyphenole, Flavonoide), Sonnenschutzmittel/-strategien bzw. Retinoide eingesetzt. Zur Korrektur von Veränderungen der gealterten Epidermis kommen chemische Peelingstrategien (z. B. Fruchtsäuren, β-Lipohydroxysäure, Trichloressigsäure, Phenolverbindungen) bzw. nichtablative [„intensed pulsed light“ (IPL), „pulsed dye laser“ (PDL), Nd:YAG] und ablative (CO2, Erbium-YAG) lichtgestützte Verfahren zum Einsatz.

Schlüsselwörter

Seneszenz Epidermis Geriatrie Sonnenschutz Peeling 

Epidermal aging and anti-aging strategies

Abstract

Epithelial senescence is a complex process depending on intrinsic as well as extrinsic factors (e.g., UV or IR light, tobacco smoke) and must be seen in the context of the aging process especially of the corium and the subcutis. Morphological alterations become apparent in the form of epithelial atrophy, structural changes within the basal membrane, and a decrease in cell count of melanocytes and Langerhans cells. Signs of cellular senescence are reduced proliferation of keratinocytes, cumulation of dysplastic keratinocytes, various mutations (e.g., c-Fos/c-Jun, STAT3, FoxO1), as well as multiple lipid or amino acid metabolic aberrations (e.g., production of advanced glycation endproducts). This causes functional changes within the physical (lipid deficiency, water distribution dysfunction, lack of hygroscopic substances), chemical (pH conditions, oxygen radicals), and immunological barrier. Prophylactically, barrier-protective care products, antioxidant substances (e.g., vitamin C, B3, E, polyphenols, flavonoids), sunscreen products/measurements, and retinoids are used. For correcting alterations in aged epidermis, chemical peelings (fruit acids, β-hydroxy acid, trichloroacetic acid, phenolic compounds), non-ablative (IPL, PDL, Nd:YAG) as well as ablative (CO2, Erbium-YAG) light-assisted methods are used.

Keywords

Senescence Epidermis Geriatrics Sunscreen Peeling 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

J. Wohlrab gibt an, Honorare für Beratung und/oder Vorträge und/oder Sponsoring für wissenschaftliche Projekte und/oder klinische Studien von folgenden Firmen erhalten zu haben: Abbott, Abbvie, Agfa, Aicuris, Allergika, Almirall, Amgene, Astellas, Biogen-Idec, Bombastus, Dermapharm, Ei, Evolva, Evonik, Galderma, Grünenthal, GSK, Janssen-Cilag, Jenapharm, Leo, L’Oréal, Mavena, Mibe, MSD, Novaliq, Novartis, Pfizer, Reddys, Riemser, Skinomics, Widmer, Wolff. K. Hilpert und L. Wolff geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine Studien an Menschen oder Tieren.

Literatur

  1. 1.
    Robert L, Labat-Robert J, Robert AM (2012) Physiology of skin aging. Clin Plast Surg 39:1–8CrossRefPubMedGoogle Scholar
  2. 2.
    Makrantonaki E, Bekou V, Zouboulis CC (2012) Genetics and skin aging. Dermatoendocrinol 4:280–284PubMedCentralCrossRefPubMedGoogle Scholar
  3. 3.
    Rzepka K, Schaarschmidt G, Nagler M, Wohlrab J (2005) [Epidermal stem cells]. J Dtsch Dermatol Ges 3:962–973CrossRefPubMedGoogle Scholar
  4. 4.
    Elias PM (1996) Stratum corneum architecture, metabolic activity and interactivity with subjacent cell layers. Exp Dermatol 5:191–201CrossRefPubMedGoogle Scholar
  5. 5.
    Giangreco A, Goldie SJ, Failla V, Saintigny G, Watt FM (2010) Human skin aging is associated with reduced expression of the stem cell markers beta1 integrin and MCSP. J Invest Dermatol 130:604–608CrossRefPubMedGoogle Scholar
  6. 6.
    Peng Y, Xuan M, Leung VY, Cheng B (2015) Stem cells and aberrant signaling of molecular systems in skin aging. Ageing Res Rev 19:8–21CrossRefPubMedGoogle Scholar
  7. 7.
    Fenske NA, Lober CW (1986) Structural and functional changes of normal aging skin. J Am Acad Dermatol 15:571–585CrossRefPubMedGoogle Scholar
  8. 8.
    Gilchrest BA, Blog FB, Szabo G (1979) Effects of aging and chronic sun exposure on melanocytes in human skin. J Invest Dermatol 73:141–143CrossRefPubMedGoogle Scholar
  9. 9.
    Elewa RM, Abdallah MA, Zouboulis CC (2015) Age-associated skin changes in innate immunity markers reflect a complex interaction between aging mechanisms in the sebaceous gland. J Dermatol 42:467–476CrossRefPubMedGoogle Scholar
  10. 10.
    Waller JM, Maibach HI (2005) Age and skin structure and function, a quantitative approach (I): blood flow, pH, thickness, and ultrasound echogenicity. Skin Res Technol 11:221–235CrossRefPubMedGoogle Scholar
  11. 11.
    Weinert BT, Timiras PS (2003) Invited review: theories of aging. J Appl Physiol (1985) 95:1706–1716CrossRefGoogle Scholar
  12. 12.
    Boukamp P (2005) Skin aging: a role for telomerase and telomere dynamics? Curr Mol Med 5:171–177CrossRefPubMedGoogle Scholar
  13. 13.
    Kosmadaki MG, Gilchrest BA (2004) The role of telomeres in skin aging/photoaging. Micron 35:155–159CrossRefPubMedGoogle Scholar
  14. 14.
    Prunier C, Masson-Genteuil G, Ugolin N, Sarrazy F, Sauvaigo S (2012) Aging and photo-aging DNA repair phenotype of skin cells-evidence toward an effect of chronic sun-exposure. Mutat Res 736:48–55CrossRefPubMedGoogle Scholar
  15. 15.
    Quan C, Cho MK, Perry D, Quan T (2015) Age-associated reduction of cell spreading induces mitochondrial DNA common deletion by oxidative stress in human skin dermal fibroblasts: implication for human skin connective tissue aging. J Biomed Sci 22:62PubMedCentralCrossRefPubMedGoogle Scholar
  16. 16.
    Palmer DM, Kitchin JS (2010) Oxidative damage, skin aging, antioxidants and a novel antioxidant rating system. J Drugs Dermatol 9:11–15PubMedGoogle Scholar
  17. 17.
    El-Domyati M, Attia S, Saleh F, Brown D, Birk DE, Gasparro F, Ahmad H, Uitto J (2002) Intrinsic aging vs. photoaging: a comparative histopathological, immunohistochemical, and ultrastructural study of skin. Exp Dermatol 11:398–405CrossRefPubMedGoogle Scholar
  18. 18.
    Neerken S, Lucassen GW, Bisschop MA, Lenderink E, Nuijs TA (2004) Characterization of age-related effects in human skin: a comparative study that applies confocal laser scanning microscopy and optical coherence tomography. J Biomed Opt 9:274–281CrossRefPubMedGoogle Scholar
  19. 19.
    Trojahn C, Dobos G, Richter C, Blume-Peytavi U, Kottner J (2015) Measuring skin aging using optical coherence tomography in vivo: a validation study. J Biomed Opt 20:045003CrossRefPubMedGoogle Scholar
  20. 20.
    Harvell JD, Maibach HI (1994) Percutaneous absorption and inflammation in aged skin: a review. J Am Acad Dermatol 31:1015–1021CrossRefPubMedGoogle Scholar
  21. 21.
    Grove GL (1989) Physiologic changes in older skin. Clin Geriatr Med 5:115–125PubMedGoogle Scholar
  22. 22.
    Rinnerthaler M, Streubel MK, Bischof J, Richter K (2015) Skin aging, gene expression and calcium. Exp Gerontol 68:59–65CrossRefPubMedGoogle Scholar
  23. 23.
    MacLaughlin J, Holick MF (1985) Aging decreases the capacity of human skin to produce vitamin D3. J Clin Invest 76:1536–1538PubMedCentralCrossRefPubMedGoogle Scholar
  24. 24.
    Nazzaro-Porro M, Passi S, Boniforti L, Belsito F (1979) Effects of aging on fatty acids in skin surface lipids. J Invest Dermatol 73:112–117CrossRefPubMedGoogle Scholar
  25. 25.
    Wohlrab J, Klapperstuck T, Reinhardt HW, Albrecht M (2010) Interaction of epicutaneously applied lipids with stratum corneum depends on the presence of either emulsifiers or hydrogenated phosphatidylcholine. Skin Pharmacol Physiol 23:298–305CrossRefPubMedGoogle Scholar
  26. 26.
    Jackson SM, Williams ML, Feingold KR, Elias PM (1993) Pathobiology of the stratum corneum. West J Med 158:279–285PubMedCentralPubMedGoogle Scholar
  27. 27.
    McCallion R, Li Wan Po A (1993) Dry and photo-aged skin: manifestations and management. J Clin Pharm Ther 18:15–32CrossRefPubMedGoogle Scholar
  28. 28.
    Ghadially R, Brown BE, Sequeira-Martin SM, Feingold KR, Elias PM (1995) The aged epidermal permeability barrier. Structural, functional, and lipid biochemical abnormalities in humans and a senescent murine model. J Clin Invest 95:2281–2290PubMedCentralCrossRefPubMedGoogle Scholar
  29. 29.
    Fuchs E, Raghavan S (2002) Getting under the skin of epidermal morphogenesis. Nat Rev Genet 3:199–209CrossRefPubMedGoogle Scholar
  30. 30.
    Kosciuczuk EM, Lisowski P, Jarczak J, Strzalkowska N, Jozwik A, Horbanczuk J, Krzyzewski J, Zwierzchowski L, Bagnicka E (2012) Cathelicidins: family of antimicrobial peptides. A review. Mol Biol Rep 39:10957–10970PubMedCentralCrossRefPubMedGoogle Scholar
  31. 31.
    Seo MD, Won HS, Kim JH, Mishig-Ochir T, Lee BJ (2012) Antimicrobial peptides for therapeutic applications: a review. Molecules 17:12276–12286CrossRefPubMedGoogle Scholar
  32. 32.
    Bhushan M, Cumberbatch M, Dearman RJ, Andrew SM, Kimber I, Griffiths CE (2002) Tumour necrosis factor-alpha-induced migration of human Langerhans cells: the influence of ageing. Br J Dermatol 146:32–40CrossRefPubMedGoogle Scholar
  33. 33.
    Makrantonaki E, Vogel M, Scharffetter-Kochanek K, Zouboulis CC (2015) [Skin aging: molecular understanding of extrinsic and intrinsic processes]. Hautarzt 66:730–737CrossRefPubMedGoogle Scholar
  34. 34.
    Kaczvinsky JR Jr, Grimes PE (2009) Practical applications of genomics research for treatment of aging skin. J Drugs Dermatol 8:s15–s18PubMedGoogle Scholar
  35. 35.
    Lener T, Moll PR, Rinnerthaler M, Bauer J, Aberger F, Richter K (2006) Expression profiling of aging in the human skin. Exp Gerontol 41:387–397CrossRefPubMedGoogle Scholar
  36. 36.
    Capell BC, Tlougan BE, Orlow SJ (2009) From the rarest to the most common: insights from progeroid syndromes into skin cancer and aging. J Invest Dermatol 129:2340–2350CrossRefPubMedGoogle Scholar
  37. 37.
    Skoczynska A, Budzisz E, Dana A, Rotsztejn H (2015) New look at the role of progerin in skin aging. Prz Menopauzalny 14:53–58PubMedCentralPubMedGoogle Scholar
  38. 38.
    Robinson MK, Binder RL, Griffiths CE (2009) Genomic-driven insights into changes in aging skin. J Drugs Dermatol 8:s8–s11PubMedGoogle Scholar
  39. 39.
    Matsumura H, Urasaki N, Yoshida K, Kruger DH, Kahl G, Terauchi R (2012) SuperSAGE: powerful serial analysis of gene expression. Methods Mol Biol 883:1–17CrossRefPubMedGoogle Scholar
  40. 40.
    Pageon H, Zucchi H, Dai Z, Sell DR, Strauch CM, Monnier VM, Asselineau D (2015) Biological effects induced by specific advanced glycation end products in the reconstructed skin model of aging. Biores Open Access 4:54–64PubMedCentralCrossRefPubMedGoogle Scholar
  41. 41.
    Gkogkolou P, Bohm M (2012) Advanced glycation end products: key players in skin aging? Dermatoendocrinol 4:259–270PubMedCentralCrossRefPubMedGoogle Scholar
  42. 42.
    Uchiki T, Weikel KA, Jiao W, Shang F, Caceres A, Pawlak D, Handa JT, Brownlee M, Nagaraj R, Taylor A (2012) Glycation-altered proteolysis as a pathobiologic mechanism that links dietary glycemic index, aging, and age-related disease (in nondiabetics). Aging Cell 11:1–13PubMedCentralCrossRefPubMedGoogle Scholar
  43. 43.
    Zhu P, Yang C, Chen LH, Ren M, Lao GJ, Yan L (2011) Impairment of human keratinocyte mobility and proliferation by advanced glycation end products-modified BSA. Arch Dermatol Res 303:339–350CrossRefPubMedGoogle Scholar
  44. 44.
    Berge U, Behrens J, Rattan SI (2007) Sugar-induced premature aging and altered differentiation in human epidermal keratinocytes. Ann N Y Acad Sci 1100:524–529CrossRefPubMedGoogle Scholar
  45. 45.
    Wondrak GT, Roberts MJ, Jacobson MK, Jacobson EL (2002) Photosensitized growth inhibition of cultured human skin cells: mechanism and suppression of oxidative stress from solar irradiation of glycated proteins. J Invest Dermatol 119:489–498CrossRefPubMedGoogle Scholar
  46. 46.
    Calderwood SK, Murshid A, Prince T (2009) The shock of aging: molecular chaperones and the heat shock response in longevity and aging – a mini-review. Gerontology 55:550–558PubMedCentralCrossRefPubMedGoogle Scholar
  47. 47.
    Hilmenyuk T, Bellinghausen I, Heydenreich B, Ilchmann A, Toda M, Grabbe S, Saloga J (2010) Effects of glycation of the model food allergen ovalbumin on antigen uptake and presentation by human dendritic cells. Immunology 129:437–445PubMedCentralCrossRefPubMedGoogle Scholar
  48. 48.
    Chen Y, Akirav EM, Chen W, Henegariu O, Moser B, Desai D, Shen JM, Webster JC, Andrews RC, Mjalli AM, Rothlein R, Schmidt AM, Clynes R, Herold KC (2008) RAGE, ligation affects T cell activation and controls T cell differentiation. J Immunol 181:4272–4278PubMedCentralCrossRefPubMedGoogle Scholar
  49. 49.
    Sanches Silveira JE, Myaki Pedroso DM (2014) UV light and skin aging. Rev Environ Health 29:243–254CrossRefPubMedGoogle Scholar
  50. 50.
    Emanuele E, Spencer JM, Braun M (2014) From DNA repair to proteome protection: new molecular insights for preventing non-melanoma skin cancers and skin aging. J Drugs Dermatol 13:274–281PubMedGoogle Scholar
  51. 51.
    Morita A, Torii K, Maeda A, Yamaguchi Y (2009) Molecular basis of tobacco smoke-induced premature skin aging. J Investig Dermatol Symp Proc 14:53–55CrossRefPubMedGoogle Scholar
  52. 52.
    Wolfle U, Seelinger G, Bauer G, Meinke MC, Lademann J, Schempp CM (2014) Reactive molecule species and antioxidative mechanisms in normal skin and skin aging. Skin Pharmacol Physiol 27:316–332CrossRefPubMedGoogle Scholar
  53. 53.
    Baxter RA (2008) Anti-aging properties of resveratrol: review and report of a potent new antioxidant skin care formulation. J Cosmet Dermatol 7:2–7CrossRefPubMedGoogle Scholar
  54. 54.
    Hubbard BA, Unger JG, Rohrich RJ (2014) Reversal of skin aging with topical retinoids. Plast Reconstr Surg 133:481e–490eCrossRefPubMedGoogle Scholar
  55. 55.
    Sorg O, Saurat JH (2014) Topical retinoids in skin ageing: a focused update with reference to sun-induced epidermal vitamin A deficiency. Dermatology 228:314–325CrossRefPubMedGoogle Scholar
  56. 56.
    Wohlrab J, Kreft D (2014) Niacinamide – mechanisms of action and its topical use in dermatology. Skin Pharmacol Physiol 27:311–315CrossRefPubMedGoogle Scholar
  57. 57.
    Lorencini M, Brohem CA, Dieamant GC, Zanchin NI, Maibach HI (2014) Active ingredients against human epidermal aging. Ageing Res Rev 15C:100–115CrossRefGoogle Scholar
  58. 58.
    Langsdon PR, Shires CB (2012) Chemical face peeling. Facial Plast Surg 28:116–125CrossRefPubMedGoogle Scholar
  59. 59.
    Trelles M, Allones I, Velez M, Mordon S (2004) Nd:YAG laser combined with IPL treatment improves clinical results in non-ablative photorejuvenation. J Cosmet Laser Ther 6:69–78CrossRefPubMedGoogle Scholar
  60. 60.
    Raulin C, Greve B, Grema H (2003) IPL technology: a review. Lasers Surg Med 32:78–87CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Universitätsklinik und Poliklinik für Dermatologie und VenerologieMartin-Luther-Universität Halle-WittenbergHalle (Saale)Deutschland
  2. 2.An-Institut für angewandte DermatopharmazieMartin-Luther-Universität Halle-WittenbergHalle (Saale)Deutschland

Personalised recommendations