Advertisement

Der Hautarzt

, Volume 66, Issue 6, pp 465–486 | Cite as

Kutane Malassezia-Infektionen und Malassezia-assoziierte Dermatosen

Ein Update
  • P. NenoffEmail author
  • C. Krüger
  • P. Mayser
CME Zertifizierte Fortbildung

Zusammenfassung

Der lipophile Spross- oder Hefepilz Malassezia (M.) spp. ist als einziger Pilz Bestandteil der physiologischen residenten menschlichen Hautflora. Heute sind mindestens 14 verschiedene Malassezia-Arten bekannt, die meisten davon lassen sich nur mittels molekularbiologischer Methoden identifizieren. Als fakultativ pathogener Mikroorganismus kann Malassezia jedoch auch Erreger von superfiziellen kutanen Infektionen sowie von Blutstrominfektionen sein. Die Pityriasis versicolor ist die wohl häufigste durch Malassezia verursachte Infektion. Seltener ist die Malassezia-Follikulitis. Nur episodisch wurde über Malassezia-verursachte Onychomykosen berichtet. Das seborrhoische Ekzem stellt eine Malassezia-assoziierte entzündliche Dermatose dar. Malassezia-Allergene werden als Trigger der „Head-Neck-Form“ der Neurodermitis angesehen. Ketoconazol hat in vitro die stärkste Aktivität gegenüber Malassezia und ist das Mittel der Wahl für die topische Therapie der Pityriasis versicolor. Alternativen sind weitere Azole, aber auch das Allylamin Terbinafin und das Hydroxypyridon Ciclopiroxolamin. Die „antiseborrhoischen“ Substanzen Pyrithion-Zink, Selendisulfid, jedoch auch Salicylsäure sind ebenfalls wirksam. Mittel der Wahl zur systemischen Behandlung der Pityriasis versicolor ist Itraconazol, eine wirksame Alternative stellt Fluconazol dar. Das seborrhoische Ekzem ist eine Domäne der Lokaltherapie, neben topischen Glukokortikoiden werden Antimykotika wie Ketoconazol, jedoch auch Sertaconazol eingesetzt. Im Off-label-Use haben sich Calcineurininhibitoren wie Pimecrolimus und Tacrolimus beim seborrhoischen Ekzem bewährt.

Schlüsselwörter

Pityriasis versicolor Seborrhoisches Ekzem Atopisches Ekzem Ketoconazol Itraconazol 

Cutaneous Malassezia infections and Malassezia associated dermatoses

An update

Abstract

The lipophilic yeast fungus Malassezia (M.) spp. is the only fungal genus or species which is part of the physiological human microbiome. Today, at least 14 different Malassezia species are known; most of them can only be identified using molecular biological techniques. As a facultative pathogenic microorganism, Malassezia represents the causative agent both of superficial cutaneous infections and of blood stream infections. Pityriasis versicolor is the probably most frequent infection caused by Malassezia. Less common, Malassezia folliculitis occurs. There is only an episodic report on Malassezia-induced onychomycosis. Seborrhoeic dermatitis represents a Malassezia-associated inflammatory dermatosis. In addition, Malassezia allergenes should be considered as the trigger of “Head–Neck”-type atopic dermatitis. Ketoconazole possesses the strongest in vitro activity against Malassezia, and represents the treatment of choice for topical therapy of pityriasis versicolor. Alternatives include other azole antifungals but also the allylamine terbinafine and the hydroxypyridone antifungal agent ciclopirox olamine. “Antiseborrhoeic” agents, e.g. zinc pyrithione, selenium disulfide, and salicylic acid, are also effective in pityriasis versicolor. The drug of choice for oral treatment of pityriasis versicolor is itraconazole; an effective alternative represents fluconazole. Seborrhoeic dermatitis is best treated with topical medication, including topical corticosteroids and antifungal agents like ketoconazole or sertaconazole. Calcineurin inhibitors, e.g. pimecrolimus and tacrolimus, are reliable in seborrhoeic dermatitis, however are used off-label.

Keywords

Pityriasis versicolor Seborrhoeic eczema Atopic dermatitis Ketoconazole Itraconazole 

Notes

Danksagung

Die exzellenten makroskopischen Fotografien der Pilzkulturen verdanken wir dem Leipziger Fotografen Uwe Schoßig.

Einhaltung ethischer Richtlinien

Interessenkonflikt

P. Nenoff erhielt Vortragshonorare von Almirall Hermal, Biogen, Galderma und MSD, außerdem besitzt er Aktien von Pfizer. C. Krüger und P. Mayser geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine Studien an Menschen oder Tieren.

Alle Patienten, die über Bildmaterial oder anderweitige Angaben innerhalb des Manuskripts zu identifizieren sind, haben hierzu ihre schriftliche Einwilligung gegeben. Im Falle von nicht mündigen Patienten liegt die Einwilligung eines Erziehungsberechtigten oder des gesetzlich bestellten Betreuers vor.

Literatur

  1. 1.
    White TC, Findley K, Dawson TL Jr et al (2014) Fungi on the skin: dermatophytes and Malassezia. Cold Spring Harb Perspect Med 4(8). pii: a019802Google Scholar
  2. 2.
    Gaitanis G, Magiatis P, Hantschke M et al (2012) The Malassezia genus in skin and systemic diseases. Clin Microbiol Rev 25:106–141PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Zhao Y, Li L, Wang JJ et al (2010) Cutaneous malasseziasis: four case reports of atypical dermatitis and onychomycosis caused by Malassezia. Int J Dermatol 49:141–145PubMedCrossRefGoogle Scholar
  4. 4.
    Yim SM, Kim JY, Ko JH et al (2010) Molecular analysis of Malassezia microflora on the skin of the patients with atopic dermatitis. Ann Dermatol 22:41–47PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    de St Maurice A, Frangoul H, Coogan A, Williams JV (2014) Prolonged fever and splenic lesions caused by Malassezia restricta in an immunocompromised patient. Pediatr Transplant 18(8):E283–286PubMedCrossRefGoogle Scholar
  6. 6.
    Iatta R, Cafarchia C, Cuna T et al (2014) Bloodstream infections by Malassezia and Candida species in critical care patients. Med Mycol 52:264–269PubMedCrossRefGoogle Scholar
  7. 7.
    Nenoff P, Reinl P, Haustein UF (2001) Malassezia: Erreger, Pathogenese und Therapie. Hautarzt 52:73–86PubMedCrossRefGoogle Scholar
  8. 8.
    Cabañes FJ, Vega S, Castellá G (2011) Malassezia cuniculi sp. nov., a novel yeast species isolated from rabbit skin. Med Mycol 49:40–48PubMedCrossRefGoogle Scholar
  9. 9.
    Castellá G, De Bellis F, Bond R, Cabañes FJ (2011) Molecular characterization of Malassezia nana isolates from cats. Vet Microbiol 148:363–367PubMedCrossRefGoogle Scholar
  10. 10.
    Gupta P, Chakrabarti A, Singhi S et al (2014) Skin colonization by Malassezia spp. in hospitalized neonates and infants in a tertiary care centre in North India. Mycopathologia 178:267–272PubMedCrossRefGoogle Scholar
  11. 11.
    Findley K, Oh J, Yang J, Conlan S et al, NIH Intramural Sequencing Center Comparative Sequencing Program, Kong HH, Segre JA (2013) Topographic diversity of fungal and bacterial communities in human skin. Nature 498:367–370PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Gouba N, Raoult D, Drancourt M (2014) Eukaryote culturomics of the gut reveals new species. PLoS One 9:e106994PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Newbold GM, Outerbridge CA, Kass PH, Maggs DJ (2014) Malassezia spp on the periocular skin of dogs and their association with blepharitis, ocular discharge, and the application of ophthalmic medications. J Am Vet Med Assoc 244:1304–1308PubMedCrossRefGoogle Scholar
  14. 14.
    Mayser P, Preuss J (2012) Pityriasis versicolor – Aktuelles zu einer alten Erkrankung. Hautarzt 63:859–867PubMedCrossRefGoogle Scholar
  15. 15.
    Booth CC (1999) Robert Willan MD FRS. (1757–1812): dermatologist of the millennium. J R Soc Med 92:313–318PubMedCentralPubMedGoogle Scholar
  16. 16.
    Bode HG, Korting GW (1962) Lehrbuch der Haut- und Geschlechtskrankheiten. Gustav Fischer Verlag, Stuttgart, S 371–372. (Begründet von E. Rieke)Google Scholar
  17. 17.
    Jena DK, Sengupta S, Dwari BC, Ram MK (2005) Pityriasis versicolor in the pediatric age group. Indian J Dermatol Venereol Leprol 71:259–261PubMedCrossRefGoogle Scholar
  18. 18.
    Larangeira de Almeida H Jr, Mayser P (2006) Absence of sunburn in lesions of pityriasis versicolor alba. Mycoses 49:516PubMedCrossRefGoogle Scholar
  19. 19.
    Sárdy M, Korting HC, Ruzicka T, Wolff H (2010) Bilateral areolar and periareolar pityriasis versicolor. J Dtsch Dermatol Ges 8:617–618PubMedGoogle Scholar
  20. 20.
    Pham-Ledard A, Ezzedine K, Couprie B et al (2010) Facial confluent and reticulate papillomatosis (Gougerot-Carteaud syndrome) or hyperkeratotic head and neck Malassezia dermatitis? Ann Dermatol Venereol 137:451–454PubMedCrossRefGoogle Scholar
  21. 21.
    Barth D, Nenoff P (2013) Konfluierende, bräunlich-schuppige Hyperkeratosen des Stammes und der Axillae. Hautarzt 64:671–673PubMedCrossRefGoogle Scholar
  22. 22.
    Hudacek KD, Haque MS, Hochberg AL et al (2012) An unusual variant of confluent and reticulated papillomatosis masquerading as tinea versicolor. Arch Dermatol 148:505–508PubMedCrossRefGoogle Scholar
  23. 23.
    Martínez Martínez ML, Azaña Defez JM, López Villaescusa MT, Gómez Sánchez M (2012) Anti-fungal resistant hypopigmented macules in an adolescent. Semergen 38:405–407PubMedCrossRefGoogle Scholar
  24. 24.
    Nenoff P, Herrmann J, Krüger C, Becker N (2012) Bifonazol – In vitro-Wirksamkeit gegenüber Corynebacterium minutissimum – ein Update zur Diagnostik und Therapie des Erythrasmas. Akt Dermatol 38:316–322CrossRefGoogle Scholar
  25. 25.
    Chaudhary R, Singh S, Banerjee T, Tilak R (2010) Prevalence of different Malassezia species in pityriasis versicolor in central India. Indian J Dermatol Venereol Leprol 76:159–164PubMedCrossRefGoogle Scholar
  26. 26.
    Giusiano G, Sosa Mde L, Rojas F et al (2010) Prevalence of Malassezia species in pityriasis versicolor lesions in northeast Argentina. Rev Iberoam Micol 27:71–74PubMedCrossRefGoogle Scholar
  27. 27.
    Xie Z, Ran Y, Zhang H et al (2014) An analysis of the Malassezia species distribution in the skin of patients with pityriasis versicolor in Chengdu, China. ScientificWorldJournal 2014:182596PubMedCentralPubMedGoogle Scholar
  28. 28.
    Rodoplu G, Saracli MA, Gümral R, Taner Yildiran S (2014) Distribution of Malassezia species in patients with pityriasis versicolor in Turkey. J Mycol Med 24:117–123PubMedCrossRefGoogle Scholar
  29. 29.
    Zuther K1, Mayser P, Hettwer U et al (2008) The tryptophan aminotransferase Tam1 catalyses the single biosynthetic step for tryptophan-dependent pigment synthesis in Ustilago maydis. Mol Microbiol 68:152–172PubMedCrossRefGoogle Scholar
  30. 30.
    Preuss J, Hort W, Lang S et al (2013) Characterization of tryptophan aminotransferase 1 of Malassezia furfur, the key enzyme in the production of indolic compounds by Malassezia furfur. Exp Dermatol 22(11):736–741PubMedCrossRefGoogle Scholar
  31. 31.
    Lang SK, Hort W, Mayser P (2011) Differentially expressed genes associated with tryptophan-dependent pigment synthesis in Malassezia furfur – a comparison with the recently published genome of Malassezia globosa. Mycoses 54:e69–e83CrossRefGoogle Scholar
  32. 32.
    Serdar ZA, Eren PA, Canbakan M et al (2010) Dermatologic findings in renal transplant recipients: possible effects of immunosuppression regimen and p53 mutations. Transplant Proc 42:2538–2541PubMedCrossRefGoogle Scholar
  33. 33.
    Krämer HJ, Podobinska M, Bartsch A et al (2005) Malassezin, a novel agonist of the aryl hydrocarbon receptor from the yeast Malassezia furfur, induces apoptosis in primary human melanocytes. Chembiochem 6:860–865PubMedCrossRefGoogle Scholar
  34. 34.
    Vlachos C, Schulte BM, Magiatis P et al (2012) Malassezia-derived indoles activate the aryl hydrocarbon receptor and inhibit Toll-like receptor-induced maturation in monocyte-derived dendritic cells. Br J Dermatol 167:496–505PubMedCrossRefGoogle Scholar
  35. 35.
    Senel E, Doğruer Şenel S, Salmanoğlu M (2014) Prevalence of skin diseases in civilian and military population in a Turkish military hospital in the central Black Sea region. J R Army Med Corps. doi:10.1136/jramc-2014-000267Google Scholar
  36. 36.
    Msyamboza KP, Mawaya LR, Kubwalo HW (2012) Burden of leprosy in Malawi: community camp-based cross-sectional study. BMC Int Health Hum Rights 12:12PubMedCentralPubMedCrossRefGoogle Scholar
  37. 37.
    Nenoff P (2013) Pityriasis versicolor. ICD-11-Nr.: B 36.A. Kapitel „Nicht Dermatophyten-bedingte oberflächliche Mykosen“ In: Dermokrates (DMK) Handbuch (Hdb), 1. AuflageGoogle Scholar
  38. 38.
    Barac A, Pekmezovic M, Milobratovic D et al (2015) Presence, species distribution, and density of Malassezia yeast in patients with seborrhoeic dermatitis – a community-based case-control study and review of literature. Mycoses. doi:10.1111/myc.12276Google Scholar
  39. 39.
    Kalinowska-Pujdak A, Nenoff P, Schmalreck A, Haustein UF (2006) Spezies-Differenzierung von Sprosspilzen der Gattung Malassezia mittels Fourier-Transform-Infrarot-Spektroskopie. Hautarzt 57:127–136PubMedCrossRefGoogle Scholar
  40. 40.
    Mayser P (2008) Hauterkrankungen durch Malassezia-Hefen. Pharmazeutische Zeitung online 16Google Scholar
  41. 41.
    Dehghan M, Akbari N, Alborzi N et al (2010) Single-dose oral fluconazole versus topical clotrimazole in patients with pityriasis versicolor: A double-blind randomized controlled trial. J Dermatol 37:699–702PubMedCrossRefGoogle Scholar
  42. 42.
    Potter BS, Burgoon CF Jr, Johnson WC (1973) Pityrosporum folliculitis. Report of seven cases and review of the Pityrosporum organism relative to cutaneous disease. Arch Dermatol 107:388–391PubMedCrossRefGoogle Scholar
  43. 43.
    Akaza N, Akamatsu H, Sasaki Y et al (2009) Malassezia folliculitis is caused by cutaneous resident Malassezia species. Med Mycol 47:618–624PubMedCrossRefGoogle Scholar
  44. 44.
    Glatz M, Buchner M, von Bartenwerffer W et al (2015) Malassezia spp.-specific Immunoglobulin E level is a marker for severity of atopic dermatitis in adults. Acta Derm Venereol 95(2):191–196Google Scholar
  45. 45.
    Darabi K, Hostetler SG, Bechtel MA, Zirwas M (2009) The role of Malassezia in atopic dermatitis affecting the head and neck of adults. J Am Acad Dermatol 60:125–136PubMedCrossRefGoogle Scholar
  46. 46.
    Kaffenberger BH, Mathis J, Zirwas MJ (2014) A retrospective descriptive study of oral azole antifungal agents in patients with patch test-negative head and neck predominant atopic dermatitis. J Am Acad Dermatol 71(3):480–483. (pii: S0190-9622 (14) 01402-9)PubMedCrossRefGoogle Scholar
  47. 47.
    Ring J, Alomar A, Bieber T et al (2012) Guidelines for treatment of atopic eczema (atopic dermatitis) Part I. J Eur Acad Dermatol Venereol 26:1045–1060PubMedCrossRefGoogle Scholar
  48. 48.
    Mayser P, Kupfer J, Nemetz D et al (2006) Treatment of head and neck dermatitis with ciclopiroxolamine cream – results of a double-blind, placebo-controlled study. Skin Pharmacol Physiol 19:153–158PubMedCrossRefGoogle Scholar
  49. 49.
    Rudramurthy SM, Honnavar P, Chakrabarti A et al (2014) Association of Malassezia species with psoriatic lesions. Mycoses 57:483–488PubMedCrossRefGoogle Scholar
  50. 50.
    Ooi ET, Tidman MJ (2014) Improving the management of seborrhoeic dermatitis. Practitioner 258:23–26, 3PubMedGoogle Scholar
  51. 51.
    Linder D, Dreiher J, Zampetti A et al (2014) Seborrheic dermatitis and hypertension in adults: a cross-sectional study. J Eur Acad Dermatol Venereol 28:1450–1455PubMedCrossRefGoogle Scholar
  52. 52.
    Bhatia N (2013) Treating seborrheic dermatitis: review of mechanisms and therapeutic options. J Drugs Dermatol 12:796–798PubMedGoogle Scholar
  53. 53.
    Dessinioti C, Katsambas A (2013) Seborrheic dermatitis: etiology, risk factors, and treatments: facts and controversies. Clin Dermatol 31:343–351PubMedCrossRefGoogle Scholar
  54. 54.
    Seebacher C (1978) [Etiology and pathogenesis of the so-called dermatitis seborrhoides of children]. Kinderärztl Prax 46:113–120PubMedGoogle Scholar
  55. 55.
    Alexopoulos A, Kakourou T, Orfanou I et al (2014) Retrospective analysis of the relationship between infantile seborrheic dermatitis and atopic dermatitis. Pediatr Dermatol 31:125–130PubMedCrossRefGoogle Scholar
  56. 56.
    Rudramurthy SM, Honnavar P, Dogra S et al (2014) Association of Malassezia species with dandruff. Indian J Med Res 139:431–437PubMedCentralPubMedGoogle Scholar
  57. 57.
    Amado Y, Patiño-Uzcátegui A, Cepero de García MC et al (2013) Seborrheic dermatitis: predisposing factors and ITS2 secondary structure for. Malassezia phylogenic analysis. Med Mycol 51:868–875PubMedCrossRefGoogle Scholar
  58. 58.
    Hiruma M, Cho O, Hiruma M et al (2014) Genotype analyses of human commensal scalp fungi, Malassezia globosa, and Malassezia restricta on the scalps of patients with dandruff and healthy subjects. Mycopathologia 177:263–269PubMedCrossRefGoogle Scholar
  59. 59.
    Kistowska M, Fenini G, Jankovic D et al (2014) Malassezia yeasts activate the NLRP3 inflammasome in antigen-presenting cells via Syk-kinase signaling. Exp Dermatol 23(12):884–889PubMedCrossRefGoogle Scholar
  60. 60.
    Patiño-Uzcátegui A, Amado Y, Cepero de García M et al (2011) Virulence gene expression in Malassezia spp from individuals with seborrheic dermatitis. J Invest Dermatol 131:2134–2136PubMedCrossRefGoogle Scholar
  61. 61.
    Tajima M, Sugita T, Nishikawa A et al (2008) Molecular analysis of Malassezia microflora in seborrheic dermatitis patients: comparison with other diseases and healthy subjects. J Invest Dermatol 128:345–351PubMedGoogle Scholar
  62. 62.
    Vlachos C, Gaitanis G, Alexopoulos EC et al (2013) Phospholipase activity after β-endorphin exposure discriminates Malassezia strains isolated from healthy and seborrhoeic dermatitis skin. J Eur Acad Dermatol Venereol 27:1575–1578PubMedCrossRefGoogle Scholar
  63. 63.
    Goldust M, Rezaee E, Rouhani S (2013) Double blind study of sertaconazole 2 % cream vs. clotrimazole 1 % cream in treatment of seborrheic dermatitis. Ann Parasitol 59:25–29PubMedGoogle Scholar
  64. 64.
    Apasrawirote W, Udompataikul M, Rattanamongkolgul S (2011) Topical antifungal agents for seborrheic dermatitis: systematic review and meta-analysis. J Med Assoc Thai 94:756–760PubMedGoogle Scholar
  65. 65.
    Goldust M, Rezaee E, Raghifar R (2013) Treatment of seborrheic dermatitis: comparison of sertaconazole 2 % cream versus pimecrolimus 1 % cream. Ir J Med Sci 182:703–706PubMedCrossRefGoogle Scholar
  66. 66.
    Goldust M, Rezaee E, Raghifar R, Hemayat S (2013) Treatment of seborrheic dermatitis: the efficiency of sertaconazole 2 % cream vs. tacrolimus 0.03 % cream. Ann Parasitol 59:73–77PubMedGoogle Scholar
  67. 67.
    Hengge UR (2013) [Off-label indications for topical tacrolimus]. Hautarzt 64:752–756PubMedCrossRefGoogle Scholar
  68. 68.
    Azimi H, Golforoushan F, Jaberian M et al (2013) Efficiency of terbinafine 1 % cream in comparison with ketoconazole 2 % cream and placebo in patients with facial seborrheic dermatitis. J Dermatolog Treat. [Epub ahead of print]Google Scholar
  69. 69.
    Fabbrocini G, Cantelli M, Monfrecola G (2014) Topical nicotinamide for seborrheic dermatitis: an open randomized study. J Dermatolog Treat 25:241–245PubMedCrossRefGoogle Scholar
  70. 70.
    Turlier V, Viode C, Durbise E et al (2014) Clinical and biochemical assessment of maintenance treatment in chronic recurrent seborrheic dermatitis: randomized controlled study. Dermatol Ther (Heidelb) 4:43–59CrossRefGoogle Scholar
  71. 71.
    Gupta AK, Richardson M, Paquet M (2014) Systematic review of oral treatments for seborrheic dermatitis. J Eur Acad Dermatol Venereol 28:16–26PubMedCrossRefGoogle Scholar
  72. 72.
    Alizadeh N, Monadi Nori H, Golchi J et al (2014) Comparison the efficacy of fluconazole and terbinafine in patients with moderate to severe seborrheic dermatitis. Dermatol Res Pract 2014:705402PubMedCentralPubMedGoogle Scholar
  73. 73.
    Nenoff P, Richter B, Will W, Haustein UF (1997) Longitudinale Untersuchung zur Ausscheidung von 1-Hydroxypyren im Urin nach externer Behandlung mit Steinkohlenteer. Hautarzt 48:240–245PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Labor für medizinische Mikrobiologie, Partnerschaft Prof. Dr. med. Pietro Nenoff & Dr. med. Constanze KrügerMölbisDeutschland
  2. 2.Klinik für Dermatologie, Venerologie und AllergologieUKGM Standort GießenGießenDeutschland

Personalised recommendations