Der Hautarzt

, Volume 65, Issue 4, pp 282–290

Anatomie, Biologie, Physiologie und Grundzüge der Pathologie des Nagelorgans

Leitthema

Zusammenfassung

Der Nagel ist das größte Hautanhangsgebilde. Er wächst lebenslang ohne Abhängigkeit von Hormonen. Der Mittelfingernagel der dominanten Hand eines jungen Erwachsenen wächst im Durchschnitt 0,1 mm/Tag, der Großzehennagel 0,03–0,05 mm/Tag. Die Form und Größe der Nägel sind von Finger zu Finger und von Zehe zu Zehe in sehr charakteristischer Weise unterschiedlich, wofür in erster Linie der Knochen der Endphalangen verantwortlich ist. Das Nagelorgan besteht aus verschiedenen epithelialen und bindegewebigen Anteilen: Das Matrixepithel bildet die Nagelplatte, das Nagelbettepithel sorgt für eine feste Haftung des Nagels, das Hyponychium ist eine hoch spezialisierte Struktur, die es erlaubt, dass sich der Nagel problemlos vom Nagelbett ablösen kann und doch kein Spalt zwischen Nagel und Nagelbett entsteht, und schließlich ist der dorsale Nagelwall für den Schutz der Nagelwurzel und die Bildung der Kutikula an seinem freien Rand für die Versiegelung der Nageltasche verantwortlich. Nagelbett und Matrix haben ein spezialisiertes Bindegewebe mit morphogenetischer Potenz. Der proximale und die lateralen Nagelwälle bilden einen nach distal offenen Rahmen für den Nagel. Der Nagel bietet Schutz für die Endphalanx und die Fingerspitze, ist ein äußerst nützliches Werkzeug zur Verteidigung und Geschicklichkeit und erhöht die Sensibilität der Fingerspitze. Nagelapparat, Fingerspitze, Sehnen und Ligamente des Endgelenkes bilden eine funktionelle Einheit und können in vieler Hinsicht nicht isoliert gesehen werden. Das Nagelorgan hat nur eine gewisse Anzahl an Erkrankungsmustern, die sich in mancher Hinsicht von denen der behaarten und der palmoplantaren Haut unterscheiden.

Schlüsselwörter

Nägel Matrix Nagelbett Nagelwachstum Nagelpathologie 

Anatomy, biology, physiology and basic pathology of the nail organ

Abstract

The nail is the largest skin appendage. It grows continuously through life in a non-cyclical manner; its growth is not hormone-dependent. The nail of the middle finger of the dominant hand grows fastest with approximately 0.1 mm/day, whereas the big toe nail grows only 0.03–0.05 mm/d. The nails’ size and shape vary characteristically from finger to finger and from toe to toe, for which the size and shape of the bone of the terminal phalanx is responsible. The nail apparatus consists of both epithelial and connective tissue components. The matrix epithelium is responsible for the production of the nail plate whereas the nail bed epithelium mediates firm attachment. The hyponychium is a specialized structure sealing the subungual space and allowing the nail plate to physiologically detach from the nail bed. The proximal nail fold covers most of the matrix. Its free end forms the cuticle which seals the nail pocket or cul-de-sac. The dermis of the matrix and nail bed is specialized with a morphogenetic potency. The proximal and lateral nail folds form a frame on three sides giving the nail stability and allowing it to grow out. The nail protects the distal phalanx, is an extremely versatile tool for defense and dexterity and increases the sensitivity of the tip of the finger. Nail apparatus, finger tip, tendons and ligaments of the distal interphalangeal joint form a functional unit and cannot be seen independently. The nail organ has only a certain number of reaction patterns that differ in many respects from hairy and palmoplantar skin.

Keywords

Nails Matrix Nail bed Nail growth Nail pathology 

Literatur

  1. 1.
    Zaias N (1963) Embryology of human nail. Arch Dermatol 87:37–53PubMedCrossRefGoogle Scholar
  2. 2.
    Okada M, Nishimukai H, Okiura T, Sugino Y (2008) Lyonization pattern of normal human nails. Genes Cells 13:421–428PubMedCrossRefGoogle Scholar
  3. 3.
    Morgan AM, Baran R, Haneke E (2001) Anatomy of the nail unit in relation to the distal digit. In: Krull E, Zook E, Baran R, Haneke E (Hrsg) Nail surgery: a text and atlas. Lippincott Williams & Wilkins, Philadelphia, S 1–28Google Scholar
  4. 4.
    Berker D de, Angus B (1996) Proliferative compartments in normal nail. Br J Dermatol 135:555–559PubMedCrossRefGoogle Scholar
  5. 5.
    Cohen PR (1996) The lunula. J Am Acad Dermatol 34:943–953PubMedCrossRefGoogle Scholar
  6. 6.
    Haneke E (2006) Surgical anatomy of the nail apparatus. Dermatol Clin 24:291–296PubMedCrossRefGoogle Scholar
  7. 7.
    Ito T, Ito N, Saathoff M et al (2005) Immunology of the human nail apparatus: the nail matrix is a site of relative immune privilege. J Invest Dermatol 125:1139–1148PubMedCrossRefGoogle Scholar
  8. 8.
    Higashi N (1968) Melanocytes of nail matrix and nail pigmentation. Arch Dermatol 97:570–574PubMedCrossRefGoogle Scholar
  9. 9.
    Perrin C, Michiels JF, Pisani A, Ortonne JP (1997) Anatomic distribution of melanocytes in normal nail unit: an immunohistochemical investigation. Am J Dermatopathol 19:462–467PubMedCrossRefGoogle Scholar
  10. 10.
    De Berker D, Dawber RPR, Thody A, Graham A (1996) Melanocytes are absent from normal nail bed; the basis of a clinical dictum. Br J Dermatol 134:564CrossRefGoogle Scholar
  11. 11.
    Theunis A, Richert B, Sass U et al (2011) Immunohistochemical study of 40 cases of longitudinal melanonychia. Am J Dermatopathol 33:27–34PubMedCrossRefGoogle Scholar
  12. 12.
    Lacour JP, Dubois D, Pisani A, Ortonne JP (1991) Anatomical mapping of Merkel cells in normal human adult epidermis. Br J Dermatol 125:535–542PubMedCrossRefGoogle Scholar
  13. 13.
    Berker D de, Wojnarowska F, Sviland L et al (2000) Keratin expression in the normal nail unit: markers of regional differentiation. Br J Dermatol 142:89–96PubMedCrossRefGoogle Scholar
  14. 14.
    Boot PM, Rowden G, Walsh N (1992) The distribution of Merkel cells in human fetal and adult skin. Am J Dermatopathol 14:391–396PubMedCrossRefGoogle Scholar
  15. 15.
    Zook EG (2003) Anatomy and physiology of the perionychium. Clin Anat 16:1–8PubMedCrossRefGoogle Scholar
  16. 16.
    Lee K-J, Kim W-S, Lee J-H et al (2006) CD10, a marker for specialized mesenchymal cells (onychofibroblasts) in the nail unit. J Dermatol Sci 42:65–67PubMedCrossRefGoogle Scholar
  17. 17.
    Lee DY, Park JH, Shin HT et al (2012) The presence and localization of onychodermis (specialized nail mesenchyme) containing onychofibroblasts in the nail unit: a morphological and immunohistochemical study. Histopathology 61:123–130PubMedCrossRefGoogle Scholar
  18. 18.
    Okazaki M, Yoshimura K, Fujiwara H et al (2003) Induction of hard keratin expression in non-nail-matrical keratinocytes by nail-matrical fibroblasts through epithelial – mesenchymal interactions. Plast Reconstr Surg 111:286–290PubMedCrossRefGoogle Scholar
  19. 19.
    Frenz C, Fritsch H, Hoch J (2000) Plastination histologic investigations on the inserting pars terminalis aponeurosis dorsalis of three-sectioned fingers. Anat Anz 182:69–73CrossRefGoogle Scholar
  20. 20.
    McGonagle D, Tan AL, Benjamin M (2009) The nail as a musculoskeletal appendage – implications for a better understanding of the link between psoriasis and arthritis. Dermatology 218:97–102PubMedCrossRefGoogle Scholar
  21. 21.
    Baran R, Juhlin L (1986) Bone dependent nail formation. Br J Dermatol 114:371–375PubMedCrossRefGoogle Scholar
  22. 22.
    Shum C, Bruno RJ, Ristic S et al (2000) Examination of the anatomic relationship of the proximal germinal nail matrix to the extensor tendon insertion. J Hand Surg Am 25:1114–1117PubMedCrossRefGoogle Scholar
  23. 23.
    Raguz JM, Haneke E (1997) Analyse der Proliferationsaktivität der Nagelmatrixzellen mit der AgNOR-Methode. Hautarzt 48(Suppl 1):S62Google Scholar
  24. 24.
    Cane AK, Spearman RI (1967) A histochemical study of keratinization in the domestic fowl. J Zool 153:337–344CrossRefGoogle Scholar
  25. 25.
    Germann H, Barran W, Plewig G (1980) Morphology of corneocytes from human nail plate. J Invest Dermatol 74:115–118PubMedCrossRefGoogle Scholar
  26. 26.
    Schumacher E, Dindorf W, Dittmar M (2009) Exposure to toxic agents alters organic elemental composition in human fingernails. Sci Total Environ 407:2151–2157PubMedCrossRefGoogle Scholar
  27. 27.
    Olabanji SO, Ajose OA, Makinde NO et al (2005) Characterization of human fingernail elements using PIXE technique. Nucl Instr Meth Phys Res B 240:895–907CrossRefGoogle Scholar
  28. 28.
    Min JZ, Hatanaka S, Yu H-F et al (2011) Determination of DL-amino acids, derivatized with R(-)-4-(3-isothiocyanatopyrrolidin-1-yl)-7-(N, N-dimethylaminosulfonyl)-2,1,3-benzoxadiazole, in nail of diabetic patients by UPLC-ESI-TOF-MS. J Chromatogr B Analyt Technol Biomed Life Sci 879:3220–3228PubMedCrossRefGoogle Scholar
  29. 29.
    Daniel CR III, Piraccini BM, Tosti A (2004) The nail and hair in forensic science. J Am Acad Dermatol 50:258–261PubMedCrossRefGoogle Scholar
  30. 30.
    Ohno T, Sakamoto M, Kurosawa T et al (2007) Total mercury levels in hair, toenail, and urine among women free from occupational exposure and their relations to renal tubular function. Environ Res 103:191–197PubMedCrossRefGoogle Scholar
  31. 31.
    Reddy K, Lowenstein EJ (2011) Forensics in dermatology. Part II. J Am Acad Dermatol 64:811–824PubMedCrossRefGoogle Scholar
  32. 32.
    Mandal BK, Ogra Y, Suzuki KT (2003) Speciation of arsenic in human nail and hair from arsenic-affected area by HPLC-inductively coupled argon plasma mass spectrometry. Toxicol Appl Pharmacol 189:73–83PubMedCrossRefGoogle Scholar
  33. 33.
    Adair BM, Hudgens EE, Schmitt MT et al (2006) Total arsenic concentrations in toenails quantified by two techniques provide a useful biomarker of chronic arsenic exposure in drinking water. Environ Res 101:213–220PubMedCrossRefGoogle Scholar
  34. 34.
    Forslind B (1982) X-ray microanalysis in dermatology. Scan Electron Microsc 4:1715–1724Google Scholar
  35. 35.
    Vecht-Hart CM, Bode P, Trouerbach WT, Collette HJA (1995) Calcium and magnesium in human toenails do not reflect bone mineral density. Clin Chim Acta 236:1–6PubMedCrossRefGoogle Scholar
  36. 36.
    Haneke E (1987) Ketoconazol-Verweildauer in der Haut nach oraler Therapie. Hautarzt 38:93–96PubMedGoogle Scholar
  37. 37.
    Haneke E (1990) Fluconazole levels in human epidermis and blister fluid. Br J Dermatol 123:273–274PubMedCrossRefGoogle Scholar
  38. 38.
    Allouche M, Hamdoum M, Mangin P, Castella V (2008) Genetic identification of decomposed cadavers using nails as DNA source. Forensic Sci Int Genet 3:46–49PubMedCrossRefGoogle Scholar
  39. 39.
    Fernández-Rodríguez A, Iturralde MJ, Fernández de Simón L et al (2003) Genetic analysis of fingernail debris: application to forensic casework. International Congress Series 1239:921–924CrossRefGoogle Scholar
  40. 40.
    Nakanishi A, Moriya F, Hashimoto Y (2003) Effects of environmental conditions to which nails are exposed on DNA analysis of them. Leg Med (Tokyo) 5(Suppl 1):S194–S197CrossRefGoogle Scholar
  41. 41.
    Braun RP, Baran R, Saurat JH, Thomas L (2006) Surgical pearl: dermoscopy of the free edge of the nail to determine the level of nail plate pigmentation and the location of its probable origin in the proximal or distal nail matrix. J Am Acad Dermatol 55:512–513PubMedCrossRefGoogle Scholar
  42. 42.
    Braun RP, Baran R, Le Gal FA et al (2007) Diagnosis and management of nail pigmentations. J Am Acad Dermatol 56:835–847PubMedCrossRefGoogle Scholar
  43. 43.
    Braun RP, Oliviero M, Kolm I et al (2009) Dermoscopy: what’s new? Clin Dermatol 27:26–34PubMedCrossRefGoogle Scholar
  44. 44.
    Hirata SH, Yamada S, Almeida FA et al (2005) Dermoscopy of the nail bed and matrix to assess melanonychia striata. J Am Acad Dermatol 53:884–886PubMedCrossRefGoogle Scholar
  45. 45.
    Hirata SH, Yamada S, Almeida FA et al (2006) Dermoscopic examination of the nail bed and matrix. Int J Dermatol 45:28–30PubMedCrossRefGoogle Scholar
  46. 46.
    Debarbieux S, Hospod V, Depaepe L et al (2012) Perioperative confocal microscopy of the nail matrix in the management of in situ or minimally invasive subungual melanomas. Br J Dermatol 167:828–836PubMedCrossRefGoogle Scholar
  47. 47.
    Chen SH, Chen YL, Cheng MH et al (2003) The use of ultrasonography in preoperative localization of digital glomus tumors. Plast Reconstr Surg 112:115–119PubMedCrossRefGoogle Scholar
  48. 48.
    Drapé JL, Wolfram-Gabel W, Idy-Peretti I et al (1996) The lunula: a magnetic resonance imagining approach to the subnail matrix area. J Invest Dermatol 106:1081–1085PubMedCrossRefGoogle Scholar
  49. 49.
    James VJ (2009) Fiber diffraction of skin and nails provides an accurate diagnosis of malignancies. Int J Cancer 125:133–138PubMedCentralPubMedCrossRefGoogle Scholar
  50. 50.
    Tambosis E, Lim C (2012) A comparison of the contrast stains, Chicago blue, chlorazole black, and Parker ink, for the rapid diagnosis of skin and nail infections. Int J Dermatol 51:935–938PubMedCrossRefGoogle Scholar
  51. 51.
    Haneke E (2013) Krankheiten der Nägel. Hautarzt 64:519–532PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Dermaticum FreiburgFreiburgDeutschland
  2. 2.Dermatol. Klinik InselspitalUniversität BernBernSchweiz
  3. 3.Centro Dermatol EpidermisPortoPortugal
  4. 4.Kliniek voor Huidziekten, Academisch ZiekenhuisUniv. GentGentBelgien

Personalised recommendations