Der Hautarzt

, Volume 61, Issue 10, pp 838–846 | Cite as

Fettgewebe

Zelluläre und molekulare Grundlagen
Leitthema
  • 411 Downloads

Zusammenfassung

Nachdem in der kutanen Biologie über Jahrzehnte hinweg der Fokus des Interesses auf Epidermis und Dermis gerichtet war, gerät in jüngster Zeit die Subkutis immer mehr in das Blickfeld von Wissenschaft, Kosmetik und Industrie. Zahlreiche neue Ansätze werden aktuell entwickelt, um den Aufbau, die Differenzierung und die Funktion des Fettgewebes zu verstehen. Zum Verständnis dieser Entwicklungen ist ein Überblick über die zellulären und molekularen Grundlagen des Fettgewebes unverzichtbar, der in dieser State-of-the-Art-Übersicht vermittelt werden soll.

Schlüsselwörter

Aufbau Funktion Fettgewebe Lipolyse Überblick 

Adipose tissue

Cellular and molecular principles

Abstract

For many decades, cutaneous biology research has primarily focused on the dermis and epidermis. In recent years the subcutaneous far has attracted the attention of basic science, cosmetology and industry. Numerous new approaches are in the process of development, enabling us to better understand assembly, differentiation and function of adipose tissue. To understand these developments a background in the cellular and molecular basics of adipose tissue is indispensable. This state-of the art article provides the needed information.

Keywords

Assembly Function Adipose tissue Lipolysis Review 

Notes

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Literatur

  1. 1.
    Brombach C, Wagner U, Eisinger-Watzl M (2006) Die Nationale Verzehrstudie II. Ernahrungs-Umschau 53:4–9Google Scholar
  2. 2.
    Nationale Verzehrstudie II, Ergebnisbericht Teil 1 (2008) Max Rubner-Institut, Bundesforschungsinstitut für Ernährung und Lebensmittel. http://www.was-esse-ich.de/uploads/media/NVS_II_Abschlussbericht_Teil_1.pdfGoogle Scholar
  3. 3.
    Rehner G, Diel H (2002) Biochemie der Ernährung, 2. Aufl. Spektrum Akademischer Verlag, Heidelberg Berlin, S 487–515Google Scholar
  4. 4.
    Thomas EL, Saeed N, Hajnal JV et al (1998) Magnetic resonance imaging of total body fat. J Appl Physiol 85:1778–1785PubMedGoogle Scholar
  5. 5.
    Klinke R, Silbernagl S (2003) Lehrbuch der Physiologie. Georg Thieme, Stuttgart New YorkGoogle Scholar
  6. 6.
    Enzi G, Gasparo M, Biondetti PR et al (1986) Subcutaneous and visceral fat distribution according to sex, age, and overweight, evaluated by computed tomography. Am J Clin Nutr 44:739–746PubMedGoogle Scholar
  7. 7.
    Cinti S (2002) Adipocyte differentiation and transdifferentiation: plasticity of the adipose organ. J Endocrinol Invest 25:823–835PubMedGoogle Scholar
  8. 8.
    Heaton JM (1972) The distribution of brown adipose tissue in the human. J Anat 112:35–39PubMedGoogle Scholar
  9. 9.
    Tanuma Y, Ohata M, Ito T, Yokochi C (1976) Possible function of human brown adipose tissue as suggested by observation on perirenal brown fats from necropsy cases of variable age groups. Arch Histol Jpn 39:117–145PubMedGoogle Scholar
  10. 10.
    Hany TF, Gharehpapagh E, Kamel EM et al (2002) Brown adipose tissue: a factor to consider in symmetrical tracer uptake in the neck and upper chest region. Eur J Nucl Med Mol Imaging 29:1393–1398CrossRefPubMedGoogle Scholar
  11. 11.
    Yeung HW, Grewal RK, Gonen M et al (2003) Patterns of (18)F-FDG uptake in adipose tissue and muscle: a potential source of false-positives for PET. J Nucl Med 44:1789–1796PubMedGoogle Scholar
  12. 12.
    Virtanen KA, Lidell ME, Orava J et al (2009) Functional brown adipose tissue in healthy adults. N Engl J Med 360:1518–1525CrossRefPubMedGoogle Scholar
  13. 13.
    Marken Lichtenbelt WD van, Vanhommerig JW, Smulders NM et al (2009) Cold-activated brown adipose tissue in healthy men. N Engl J Med 360:1500–1508CrossRefGoogle Scholar
  14. 14.
    Cypess AM, Lehman S, Williams G et al (2009) Identification and importance of brown adipose tissue in adult humans. N Engl J Med 360:1509–1517CrossRefPubMedGoogle Scholar
  15. 15.
    Mattson MP (2010) Perspective: Does brown fat protect against diseases of aging? Ageing Res Rev 9:69–76CrossRefPubMedGoogle Scholar
  16. 16.
    Wajchenberg BL (2000) Subcutaneous and visceral adipose tissue: their relation to the metabolic syndrome. Endocr Rev 21:697–738CrossRefPubMedGoogle Scholar
  17. 17.
    Coleman SR, Grover R (2006) The anatomy of the aging face: volume loss and changes in 3-dimensional topography. Aesthet Surg J 26(1S):S4–S9CrossRefPubMedGoogle Scholar
  18. 18.
    Hughes VA, Roubenoff R, Wood M et al (2004) Anthropometric assessment of 10-y changes in body composition in the elderly. Am J Clin Nutr 80:475–482PubMedGoogle Scholar
  19. 19.
    Schwartz RS, Shuman WP, Bradbury VL et al (1990) Body fat distribution in healthy young and older men. J Gerontol 45:M181–M185PubMedGoogle Scholar
  20. 20.
    Kennaugh JM, Hay WW Jr (1987) Nutrition of the fetus and newborn. West J Med 147:435–448PubMedGoogle Scholar
  21. 21.
    Barker DJ, Winter PD, Osmond C et al (1989) Weight in infancy and death from ischaemic heart disease. Lancet 334:577–580CrossRefGoogle Scholar
  22. 22.
    Kirkland JL, Hollenberg CH, Kindler S, Gillon WS (1994) Effects of age and anatomic site on preadipocyte number in rat fat depots. J Gerontol 49:B31–B35PubMedGoogle Scholar
  23. 23.
    Karagiannides I, Tchkonia T, Dobson DE et al (2001) Altered expression of C/EBP family members results in decreased adipogenesis with aging. Am J Physiol Regul Integr Comp Physiol 280:R1772–R1780PubMedGoogle Scholar
  24. 24.
    Kitagawa Y, Korobi M, Toriyama K et al (2006) History of discovery of human adipose-derived stem cells and their clinical application. Jpn J Plast Reconstr Surg 49:1097–1104Google Scholar
  25. 25.
    Fraser JK, Wulur I, Alfonso Z, Hedrick MH (2006) Fat tissue: an underappreciated source of stem cells for biotechnology. Trends Biotechnol 24:150–154CrossRefPubMedGoogle Scholar
  26. 26.
    Hauner H, Entenmann G (1991) Regional variation of adipose differentiation in cultured stromal-vascular cells from the abdominal and femoral adipose tissue of obese women. Int J Obes 15:121–126PubMedGoogle Scholar
  27. 27.
    Tang QQ, Zhang JW, Daniel LM (2004) Sequential gene promoter interactions of C/EBPbeta, C/EBPalpha, and PPARgamma during adipogenesis. Biochem Biophys Res Commun 319:235–239CrossRefPubMedGoogle Scholar
  28. 28.
    Dunn FL, Higgins LS, Fredrickson J, Depaoli AM (2010) Selective modulation of PPARgamma activity can lower plasma glucose without typical thiazolidinedione side-effects in patients with type 2 diabetes. J Diabetes Complications [Epub ahead of print]Google Scholar
  29. 29.
    Arner P (1997) Regional adipocity in man. J Endocrinol 155:191–192CrossRefPubMedGoogle Scholar
  30. 30.
    Kanadys WM, Oleszczuk J (1999) Pathophysiological aspects of adipose tissue development in women. Ginekol Pol 70:456–463PubMedGoogle Scholar
  31. 31.
    Arner P (1998) Not all fat is alike. Lancet 351:1301–1302CrossRefPubMedGoogle Scholar
  32. 32.
    Bouchard C, Despres JP, Mauriege P (1993) Genetic and nongenetic determinants of regional fat distribution. Endocr Rev 14:72–93PubMedGoogle Scholar
  33. 33.
    Arner P, Hellstrom L, Wahrenberg H, Bronnegard M (1990) Beta-adrenoceptor expression in human fat cells from different regions. J Clin Invest 86:1595–1600CrossRefPubMedGoogle Scholar
  34. 34.
    Hoffstedt J, Arner P, Hellers G, Lonnqvist F (1997) Variation in adrenergic regulation of lipolysis between omental and subcutaneous adipocytes from obese and non-obese men. J Lipid Res 38:795–804PubMedGoogle Scholar
  35. 35.
    Obici S (2009) Minireview: Molecular targets for obesity therapy in the brain. Endocrinology 150:2512–2517CrossRefPubMedGoogle Scholar
  36. 36.
    Montague CT, Prins JB, Sanders L et al (1998) Depot-related gene expression in human subcutaneous and omental adipocytes. Diabetes 47:1384–1391CrossRefPubMedGoogle Scholar
  37. 37.
    Koenig W, Khuseyinova N, Baumert J et al (2006) Serum concentrations of adiponectin and risk of type 2 diabetes mellitus and coronary heart disease in apparently healthy middle-aged men: results from the 18-year follow-up of a large cohort from southern Germany. J Am Coll Cardiol 48:1369–1377CrossRefPubMedGoogle Scholar
  38. 38.
    Esch P (2006) Caring for HIV-positive and aging patients with associated facial lipoatrophy. Plast Surg Nurs 26:17–23PubMedGoogle Scholar
  39. 39.
    Brinkman K, ter Hofstede HJ, Burger DM et al (1998) Adverse effects of reverse transcriptase inhibitors: mitochondrial toxicity as common pathway. AIDS 12:1735–1744CrossRefPubMedGoogle Scholar
  40. 40.
    Brinkman K, Smeitink JA, Romijn JA, Reiss P (1999) Mitochondrial toxicity induced by nucleoside-analogue reverse-transcriptase inhibitors is a key factor in the pathogenesis of antiretroviral-therapy-related lipodystrophy. Lancet 354:1112–1115CrossRefPubMedGoogle Scholar
  41. 41.
    Guallar JP, Rojas-Garcia R, Garcia-Arumi E et al (2008) Impaired expression of mitochondrial and adipogenic genes in adipose tissue from a patient with acquired partial lipodystrophy (Barraquer-Simons syndrome): a case report. J Med Case Reports 2:284CrossRefPubMedGoogle Scholar
  42. 42.
    Simha V, Garg A (2003) Phenotypic heterogeneity in body fat distribution in patients with congenital generalized lipodystrophy caused by mutations in the AGPAT2 or seipin genes. J Clin Endocrinol Metab 88:5433–5437CrossRefPubMedGoogle Scholar
  43. 43.
    Capeau J, Magre J, Lascols O et al (2005) Diseases of adipose tissue: genetic and acquired lipodystrophies. Biochem Soc Trans 33:1073–1077CrossRefPubMedGoogle Scholar
  44. 44.
    Hegele RA, Joy TR, Al-Attar SA, Rutt BK (2007) Thematic review series: adipocyte biology. Lipodystrophies: windows on adipose biology and metabolism. J Lipid Res 48:1433–1444CrossRefPubMedGoogle Scholar
  45. 45.
    Kamenisch Y, Fousteri M, Knoch J et al (2010) Proteins of nucleotide and base excision repair pathways interact in mitochondria to protect from loss of subcutaneous fat, a hallmark of aging. J Exp Med 207:379–390CrossRefPubMedGoogle Scholar
  46. 46.
    Scherwitz C, Braun-Falco O (1978) So-called cellulite. J Dermatol Surg Oncol 4:230–234PubMedGoogle Scholar
  47. 47.
    Khan MH, Victor F, Rao B, Sadick NS (2010) Treatment of cellulite: Part I. Pathophysiology. J Am Acad Dermatol 62:361–370; quiz 71–72CrossRefPubMedGoogle Scholar
  48. 48.
    Nurnberger F, Muller G (1978) So-called cellulite: an invented disease. J Dermatol Surg Oncol 4:221–229PubMedGoogle Scholar
  49. 49.
    Schuller-Petrovic S, Wolkart G, Hofler G et al (2008) Tissue-toxic effects of phosphatidylcholine/deoxycholate after subcutaneous injection for fat dissolution in rats and a human volunteer. Dermatol Surg 34:529–542; discussion 42–43CrossRefPubMedGoogle Scholar
  50. 50.
    Ablon G, Rotunda AM (2004) Treatment of lower eyelid fat pads using phosphatidylcholine: clinical trial and review. Dermatol Surg 30:422–427; discussion 8CrossRefPubMedGoogle Scholar
  51. 51.
    Rotunda AM, Ablon G, Kolodney MS (2005) Lipomas treated with subcutaneous deoxycholate injections. J Am Acad Dermatol 53:973–978CrossRefPubMedGoogle Scholar
  52. 52.
    Rotunda AM, Weiss SR, Rivkin LS (2009) Randomized double-blind clinical trial of subcutaneously injected deoxycholate versus a phosphatidylcholine-deoxycholate combination for the reduction of submental fat. Dermatol Surg 35:792–803CrossRefPubMedGoogle Scholar
  53. 53.
    Gregoire FM, Smas CM, Sul HS (1998) Understanding adipocyte differentiation. Physiol Rev 78:783–809PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Institut für umweltmedizinische Forschung (IUF)DüsseldorfDeutschland

Personalised recommendations