Advertisement

Der Hautarzt

, Volume 60, Issue 4, pp 310–317 | Cite as

UV, sichtbares Licht, Infrarot

Welche Wellenlängen produzieren oxidativen Stress in menschlicher Haut?
  • L. ZastrowEmail author
  • N. Groth
  • F. Klein
  • D. Kockott
  • J. Lademann
  • L. Ferrero
Leitthema

Zusammenfassung

Es wird experimentell gezeigt, dass die Bildung von freien Radikalen – hauptsächlich reaktiven Sauerstoffspezies (ROS) – die allgemeine photobiologische Antwort für die Haut-Sonnenlicht-Wechselwirkung darstellt. Das freie Radikal-Aktionsspektrum (Wellenlängenabhängigkeit) für ultraviolettes und sichtbares Licht (280–700 nm) wird mittels quantitativer ESR bestimmt. Sichtbares Licht produziert etwa 50% des totalen oxidativen Stresses, generiert durch Sonnenlicht. Wie in den anderen Bereichen können hoch reaktive O- 2-, OH- und CHR-Radikale in dieser Region identifiziert werden. Die Menge der erzeugten Radikale korreliert mit der Beleuchtungsstärke (Lux), die auf der Haut erreicht wird. Die Erzeugung freier Radikale durch nahes Infrarot (NIR, 700–1600 nm) in menschlicher Haut wird gezeigt. Die Radikalgenerierung ist von der Bestrahlungsstärke und der durch das NIR in der Haut induzierten stationären Temperatur abhängig. Die Temperaturabhängigkeit der Radikalbildung folgt der physiologischen Fieberkurve des Menschen. Über das gesamte aktive Sonnenspektrum werden im menschlichen Hautgewebe freie Radikale des gleichen Typs erzeugt. Der Bereich der schädlichen oder nützlichen Wirkung von Sonnenlicht definierter Qualität könnte künftig durch die Einführung eines Schwellenwertes für freie Radikale in der menschlichen Haut charakterisiert werden.

Schlüsselwörter

UV Sichtbares Licht Infrarot Freie Radikale Oxidativer Stress 

UV, visible and infrared light

Which wavelengths produce oxidative stress in human skin?

Abstract

Experimental evidence suggests that the creation of free radicals – mainly reactive oxygen species (ROS) – is the common photobiological answer to the skin-sunlight interaction. The free radical action spectrum (wavelength dependency) for ultraviolet and visible light (280–700 nm) has been determined by quantitative ESR spectroscopy. Visible light produces around 50% of the total oxidative stress caused by sunlight. Reactive species like O- 2, OH and CHR are generated by visible light. The amount of ROS correlates with the visible light intensity (illuminance). We demonstrated the creation of excess free radicals by near-infrared light (NIR, 700–1600 nm). Free radical generation does not depend exclusively on the NIR irradiance, but also on the NIR initiated skin temperature increase. The temperature dependence follows the physiological fever curve. Our results indicate that the complex biological system skin creates the same type of free radicals over the entire active solar spectrum. This general response will make it possible to define the beneficial or deleterious action of sunlight on human skin by introduction of a free radical threshold value.

Keywords

UV Visible light Infrared Free Radicals Oxidative Stress 

Notes

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Literatur

  1. 1.
    Anderson RR, Parish JA (1981) The optics of human skin. J Invest Dermatol 77:13–19PubMedCrossRefGoogle Scholar
  2. 2.
    Baier J, Maisch T, Maier M et al (2007) Direct detection of singlet oxygen generated by UVA irradiation in human cells and skin. J Invest Dermatol 127:1498–1506PubMedCrossRefGoogle Scholar
  3. 3.
    Besaratinia A, Bates SE, Synold TW, Pfeifer GP (2004) Similar mutagenicity of photoactivated porphyrins and ultraviolet A radiation in mouse embryonic fibroblast: involvement of oxidative DNA lesions in mutagenesis. Biochem 43(49):15557–15566CrossRefGoogle Scholar
  4. 4.
    Brandt M, Rohr M, Schrader A (2001) Influence of VIS/NIR radiation on the characteristics of sunscreens and human skin. IFSCC Magazine 4(1):15–19Google Scholar
  5. 5.
    Cavallari V, Cicciarello R, Torre V et al (2001) Chronic heat-induced skin lesions (erythema ab Igne). Ultrastructural studies. Ultrastruct Pathol 25(2):93–97PubMedCrossRefGoogle Scholar
  6. 6.
    Fuchs J, Herrling TH, Groth N (2001) Detection of free radicals in skin: a review of the literature and new developments. Oxidants and antioxidants in cutaneous biology. Curr Probl Dermatol 29:1–17PubMedCrossRefGoogle Scholar
  7. 7.
    Girotti AW (1998) Lipid hydroperoxide generation, turnover and effector action in biological systems. J Lipid Res 39:1529–1542PubMedGoogle Scholar
  8. 8.
    Hakozaki T, Date A, Yoshii T et al (2006) Real-time vizualization and quantification of UVB-induced reactive oxygen species in a human skin equivalent model. Proceeding of IFSCC Congress Osaka, pp 1–6Google Scholar
  9. 9.
    Haywood R (2006) Relevance of sunscreen application method, visible light and sun light intensity to free-radical protection: a study of ex vivo human skin. Photochem Photobiol 82(4):1123–1131PubMedCrossRefGoogle Scholar
  10. 10.
    Herrling TH, Groth N, Golz K, Zastrow L (2000) The role of aggressive OH free radicals in skin – their generation detection and prevention. SÖFW-Journal 126(9):20–27Google Scholar
  11. 11.
    Hong EJ, Santucci LA, Tran X, Silverman DJ (1998) Superoxide dismutase-dependent, catalase-sensitive peroxides in human endothelial cells infected by rickettsia rickettsii. Infect Immun 66(4):1293–1298PubMedGoogle Scholar
  12. 12.
    International Sun Protection Factor (SPF) Test Method (2006) Colipa Guidelines, http://www.colipa.comGoogle Scholar
  13. 13.
    Jurkiewicz-Lange BA, Buettner G (2001) Electron paramagnetic resonance detection of free radicals in UV-irradiated human and mouse skin. In Oxidants and Antioxidants in Cutaneous Biology. Curr Probl Dermatol. Karger (Basel) 29:18–25Google Scholar
  14. 14.
    Kielbassa C, Roza L, Epe B (1997) Wavelength dependence of oxidative DNA damage induced by UV and visible light. Carcinogenesis 18:811–816PubMedCrossRefGoogle Scholar
  15. 15.
    Lund L, Ley RD, Felton LA, Timmins GS (2007) Determination of wavelength-specific UV protection factors of sunscreens in intact skin by EPR measurement of UV-induced reactive melanin radical. Photochem Photobiol 83:952–957PubMedCrossRefGoogle Scholar
  16. 16.
    Measurement standards for UVA protection efficacy (1996) Japan Cosmetic Industry Association. Tech BullGoogle Scholar
  17. 17.
    Nishimura H, Yasui H, Sakurai H (2006) Generation and distribution of reactive oxygen species in the skin of hairless mice under UVA: studies on in vivo chemiluminescent detection and tape stripping methods. Exp Dermatol 15:891–899PubMedCrossRefGoogle Scholar
  18. 18.
    Pullmann H, Möres E, Reinbach S (1985) Effects of ultrared and UVA radiation on human skin and the therapeutic use in atopic dermatitis. Z Hautkr 60(1/2):171–177Google Scholar
  19. 19.
    Ravanat JL, Di Mascio P, Martinez GR et al (2000) Singlet oxygen induces oxidation of cellular DNA. J Biol Chem 275(51):40601–40604PubMedCrossRefGoogle Scholar
  20. 20.
    Rossi M, Marini D, Rizzi A (2004) Methods and application for photorealistic rendering and lighting of ancient buildings. J Cult Heri 5:291–300CrossRefGoogle Scholar
  21. 21.
    Schroeder P, Pohl C, Calles CH et al (2007) Cellular response to infrared radiation involves retrograde mitochondrial signaling. Free Radic Biol Med 43:128–135PubMedCrossRefGoogle Scholar
  22. 22.
    Setlow RB, Grist E, Thompson K, Woodhead AD (1993) Wavelengths effective in induction of malignant melanoma. Proc Natl Acad Sci USA 90:6666–6670PubMedCrossRefGoogle Scholar
  23. 23.
    Zastrow L, Ferrero L, Herrling T, Groth N (2004) Integrated sun protection factor: a new sun protection factor based on free radicals generated by UV radiation. Skin Pharmacol Physiol 17:219–231PubMedCrossRefGoogle Scholar
  24. 24.
    Zastrow L, Groth N, Klein F et al (2008) Detection and identification of free radicals generated by UV and visible light in ex vivo human skin. IFSCC Magazine 11(3):207–215Google Scholar
  25. 25.
    Zastrow L, Herrling TH, Berliner LJ et al (2003) In vivo measurement of free radicals on human skin. IFSCC Magazine 6:295–300Google Scholar

Copyright information

© Springer Medizin Verlag 2009

Authors and Affiliations

  • L. Zastrow
    • 1
    Email author
  • N. Groth
    • 2
  • F. Klein
    • 2
  • D. Kockott
    • 3
  • J. Lademann
    • 4
  • L. Ferrero
    • 1
  1. 1.Coty /Lancaster SAM, International R&D CenterMonacoMonaco
  2. 2.Privatinstitut Galenus GmbHBerlinDeutschland
  3. 3.UV-TechnikHanauDeutschland
  4. 4.Department of Dermatology, Center of Experimental and Applied Cutaneous PhysiologyCharité-UniversitätsmedizinBerlinDeutschland

Personalised recommendations