Advertisement

Der Hautarzt

, 59:475 | Cite as

Experimentelle Tumortherapie beim malignen Melanom und ihre Rationale

  • K. RassEmail author
  • M. Diefenbacher
  • W. Tilgen
Leitthema

Zusammenfassung

Das maligne Melanom erfolgreich behandeln zu können bedeutet derzeit, den Tumor in einem frühen Stadium zu entdecken und operativ zu beseitigen. Eine Verbesserung des Überlebens insbesondere in der palliativen Situation ist, von Einzelfällen abgesehen, mit den verfügbaren Therapieoptionen nicht möglich. Innovative experimentelle Ansätze werden daher dringend gebraucht, um die palliative und auch adjuvante Therapie des Melanoms richtungsweisend zu verbessern. Bei den Targeted Therapien verspricht man sich therapeutische Effekte durch die gezielte Inhibition von Molekülen, die für die Tumorpathogenese bedeutsam sind. Wichtige Angriffspunkte sind Signaltransduktion, Angiogenese und Apoptoseresistenz. Aktuelle diagnostische und therapeutische Entwicklungen steigern die Wirksamkeit von Chemotherapien. Auch die wachsenden Kenntnisse der Tumorimmunologie eröffnen neue Therapieansätze der Vakzinierung, des Zelltransfers und insbesondere der Blockade von Immuntoleranzmechanismen. Eine Herausforderung für die Zukunft wird weiterhin darin liegen, Patienten zu identifizieren, die von bestimmten Therapien profitieren, und diese besser zu charakterisieren.

Schlüsselwörter

Melanom Targeted Therapie Chemotherapie Vakzinierung CTLA-4 

Experimental treatment of malignant melanoma and its rationale

Abstract

To treat malignant melanoma successfully currently means to recognize the tumor at an early stage and to remove it immediately. Aside from individual cases, available treatment modalities are not able to increase survival, especially in the palliative situation. Thus innovative experimental approaches are urgently needed to strongly improve the palliative and adjuvant treatment of melanoma. Anti-tumor effects are expected from targeted therapies, which are directed against defined molecules decisive for tumor pathogenesis. Crucial points of attack are signaling pathways, angiogenesis and apoptosis resistance. New diagnostic and therapeutic developments have enhanced the efficacy of chemotherapies. Increasing insights into tumor immunology provide new treatment approaches of vaccination, cell transfer and especially of blocking immune tolerance mechanisms. It will be challenging for the future to identify and characterize more precisely those patients who might most benefit from a certain treatment approach.

Keywords

Melanoma Targeted therapy Chemotherapy Vaccination CTLA-4 

Notes

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Literatur

  1. 1.
    Agarwala SS, Keilholz U, Hogg D et al. (2007) Randomized phase III study of paclitaxel plus carboplatin with or without sorafenib as second-line treatment in patients with advanced melanoma. J Clin Oncol ASCO Annual Meeting Proceedings 25: 8510 (Abstract)Google Scholar
  2. 2.
    Balch CM, Soong SJ, Gerschenwald JE et al. (2001) Prognostic factors analysis of 17.600 melanoma patients: validation of the American Joint Committee on Cancer melanoma staging system. J Clin Oncol 19: 3622–3634PubMedGoogle Scholar
  3. 3.
    Bayes M, Rabasseda X, Prous JR (2004) Gateways to clinical trials. Meth Find Exp Clin Pharmacol 26: 473–503Google Scholar
  4. 4.
    Becker JC, Kirkwood JM, Agarwala SS et al. (2006) Molecular targeted therapy for melanoma – current reality and future options. Cancer 107: 2317–2327PubMedCrossRefGoogle Scholar
  5. 5.
    Bedikian AY, Millward M, Pehamberger H et al. (2006) Bcl-2 antisense (oblimersen sodium) plus dacarbazine in patients with advanced melanoma: The Oblimersen Melanoma Study Group. J Clin Oncol 24: 4738–4745PubMedCrossRefGoogle Scholar
  6. 6.
    Berkenblit A, Eder JP Jr, Ryan DP et al. (2007) Phase I clinical trial of STA-4783 in combination with paclitaxel in patients with refractory solid tumors. Clin Cancer Res 13: 584–590PubMedCrossRefGoogle Scholar
  7. 7.
    Chapman PB (2007) Melanoma vaccines. Semin Oncol 34: 516–523PubMedCrossRefGoogle Scholar
  8. 8.
    Cohen AD, Wolchok JD (2005) DNA vaccines for melanoma, In: Giaccone G, Schilsky R, Sondel PM (eds) Cancer chemotherapy and biological response modifiers, Vol. 22. Elsevier, New York, pp 761–768Google Scholar
  9. 9.
    Curtin JA, Fridlyand J, Kageshita T et al. (2005) Distinct sets of genetic alterations in melanoma. N Eng J Med 353: 2135–2147CrossRefGoogle Scholar
  10. 10.
    Davies H, Bignell GR, Cox C et al. (2002) Mutations of the BRAF gene in human cancer. Nature 417: 949–954PubMedCrossRefGoogle Scholar
  11. 11.
    Dudley ME, Wunderlich JR, Yang JC et al. (2005) Adoptive cell transfer therapy following non-myeloablative but lymphodepleting chemotherapy for the treatment of patients with refractory metastatic melanoma. J Clin Oncol 23: 2346–2357PubMedCrossRefGoogle Scholar
  12. 12.
    Dudley ME, Rosenberg SA (2007) Adoptive cell transfer therapy. Semin Oncol 34: 524–531PubMedCrossRefGoogle Scholar
  13. 13.
    Eggermont AMM, Kirkwood JM (2004) Re-evaluating the role of dacarbazine in metastastic melanoma: what have we learned in 30 years? Eur J Cancer 40: 1825–1836PubMedCrossRefGoogle Scholar
  14. 14.
    Garbe C, Eigentler TK (2004) Therapie des malignen Melanoms im Stadium der Fernmetastasierung. Hautarzt 55: 195–213PubMedCrossRefGoogle Scholar
  15. 15.
    Garbe C, Eigentler TK (2007) Diagnosis and treatment of cutaneous melanoma: state of the art 2006. Melanoma Res 17: 117–127PubMedCrossRefGoogle Scholar
  16. 16.
    Garbe C, Radny P, Linse R et al. (2008) Adjuvant low-dose interferon α2a with or without dacarbazine compared with surgery alone: a prospective-randomized phase III DeCOG trial in melanoma patients with regional lymph node metastasis. Ann Oncol Feb 14 [Epub ahead of print]Google Scholar
  17. 17.
    Haluska F, Pemberton T, Ibrahim N et al. (2007) The RTT/RAS/BRAF/PI3 K pathways in melanoma: Biology, small molecule inhibitors, and potential applications. Semin Oncol 34: 546–554PubMedCrossRefGoogle Scholar
  18. 18.
    Hauschild A, Rass K, Tilgen W (2008) Systemische Therapie des Melanoms: Aktuelle klinische Studien. Hautarzt (im Druck)Google Scholar
  19. 19.
    Hersey P, Sosman J, O’Day S et al. (2005) A phase II, randomized, open label study evaluating the antitumor activity of MEDI-522, a humanized monoclonal antibody directed against the human alpha v beta 3 integrin +/– dacarbazine (DTIC) in patients with metastatic melanoma. J Clin Oncol (Meeting Abstracts) 23: 7507Google Scholar
  20. 20.
    Hwu WJ, Krown SE, Menell JH et al. (2003) Phase II study of temozolomide plus thalidomide for the treatment of metastatic melanoma. J Clin Oncol 21: 3351–3356PubMedCrossRefGoogle Scholar
  21. 21.
    Jemal A, Siegel R, Ward E et al. (2007) Cancer statistics, 2007. CA Cancer J Clin 57: 43–66PubMedCrossRefGoogle Scholar
  22. 22.
    Krown SE, Niedzwiecki D, Hwu WJ et al. (2006) Phase II study of temozolomide and thalidomide in patients with metastatic melanoma in the brain: high rate of thromboembolic events (CALGB 500102). Cancer 107: 1883–1890PubMedCrossRefGoogle Scholar
  23. 23.
    Maeurer MG, Gollin SM, Martin D et al. (1996) Tumor escape from immune recognition. Lethal recurrent melanoma in a patient associated with downregulation of the peptide transporter protein TAP-1 and loss of expression of the immunodominant MART-1/Melan-A antigen. J. Clin Invest 98: 1633–1641CrossRefGoogle Scholar
  24. 24.
    McDermott DF, Sosman JA, Hodi FS et al. (2007) Randomized phase II study of dacarbazine with or without sorafenib in patients with advanced melanoma. J Clin Oncol ASCO Annual Meeting Proceedings 25: 8511 (Abstract)Google Scholar
  25. 25.
    Mule JJ, Shu S, Schwarz SL et al. (1984) Adoptive immunotherapy of established pulmonary metastases with LAK cells and recombinant interleukin-2. Science 225: 1487–1489PubMedCrossRefGoogle Scholar
  26. 26.
    O’Day S, Gonzalez R, Lawson D et al. (2007) Subgroup analysis of efficacy and safety analysis of a randomized, double-blinded controlled phase II study of STA-4783 in combination with paclitaxel in patients with metastatic melanoma. J Clin Oncol ASCO Annual Meeting Proceedings 25: 8528 (Abstract)Google Scholar
  27. 27.
    O’Day SJ, Hamid O, Urba WJ (2007) Targeting cytotoxic T-lymphocyte antigen-4 (CTLA-4). A novel strategy for the treatment of melanoma and other malignancies. Cancer 110: 2614–2627CrossRefGoogle Scholar
  28. 28.
    Peterson AC, Swiger S, Stadler WM et al. (2004) Phase II study of thr Flk-1 tyrosine kinase inhibitor SU5416 in advanced melanoma. Clin Cancer Res 10: 4048–4054PubMedCrossRefGoogle Scholar
  29. 29.
    Phan GQ, Yang J, Sherry RM et al. (2003) Cancer regression and autoimmunity induced by cytotoxic T-lymphocyte-associated antigen 4 blockade in patients with metastatic melanoma. Proc Natl Acad Sci USA 100: 8372–8377PubMedCrossRefGoogle Scholar
  30. 30.
    Pollock PM, Harper UL, Hansen KS et al. (2003) High frequency of BRAF mutations in nevi. Nat Genet 33: 19–20PubMedCrossRefGoogle Scholar
  31. 31.
    Rass K, Tadler D, Tilgen W (2006) Therapie des metastasierten Melanoms: Von First-, Second- und Pathogenese-orientierten Third-line-Therapien. Hautarzt 57: 773–784PubMedCrossRefGoogle Scholar
  32. 32.
    Reuben JM, Lee BN, Li C et al. (2006) Biologic and immunomodulatory events after CTLA-4 blockade with ticilimumab in patients with advanced malignant melanoma. Cancer 106: 2437–2444PubMedCrossRefGoogle Scholar
  33. 33.
    Ribas A, Camacho LH, Lopez-Borestein G et al. (2005) Antitumor activity in melanoma and antiself responses in a phase I trial with the anticytotoxic T-lymphocyte-associated antigen 4 monoclonal antibody CP-675,206. J Clin Oncol 23: 8968–8977PubMedCrossRefGoogle Scholar
  34. 34.
    Rosenberg SA, Lotze MT, Yang JC et al. (1993) Prospective randomized trial of high-dose interleukin-2 alone or in conjunction with lymphokine-activated killer cells for the treatment of patients with advanced cancer. J Natl Cancer Inst 85: 622–632PubMedCrossRefGoogle Scholar
  35. 35.
    Schadendorf D, Ugurel S, Schuler-Thurner B et al. (2006) Dacarbazine (DTIC) versus vaccination with autologous peptide-pulsed dendritic cells (DC) in first-line treatment of patients with metastatic melanoma: a randomized phase III trial of the DC study group of the DeCOG. Ann Oncol 17: 563–570PubMedCrossRefGoogle Scholar
  36. 36.
    Tawbi HA, Kirkwood JM (2007) Management of metastatic melanoma. Semin Oncol 34: 532–545PubMedCrossRefGoogle Scholar
  37. 37.
    Ugurel S, Schadendorf D, Pföhler C et al. (2006) In vitro drug sensitivity predicts response and survival after individualized sensitivity-directed chemotherapy in metastatic melanoma: a multicenter phase II trial of the Dermatologic Cooperative Oncology Group. Clin Cancer Res 12: 5454–5463PubMedCrossRefGoogle Scholar
  38. 38.
    Wilhelm SM, Carter C, Tang L et al. (2004) BAY 43–9006 exhibits broad spectrum oral antitumour activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumour progression and angiogenesis. Cancer Res 6: 7099–7109CrossRefGoogle Scholar

Copyright information

© Springer Medizin Verlag 2008

Authors and Affiliations

  1. 1.Klinik für Dermatologie, Venerologie und AllergologieUniversitätsklinikum des SaarlandesHomburgDeutschland

Personalised recommendations