Der Hautarzt

, 59:194 | Cite as

Kreuzreaktivität auf Bienen- und Wespengift

Leitthema

Zusammenfassung

Bei 30–40% der Insektengiftallergiker besteht serologisch eine Doppelpositivität gegenüber Bienen- und Wespengift. Neben echten Doppelsensibilisierungen sind klinisch irrelevante IgE-Antikörper gegen kreuzreaktive Kohlenhydratdeterminanten (α1,3-fucosylierte N-Glykane; „cross-reactive carbohydrate determinants“, CCDs) die häufigste und oft alleinige Ursache der Doppelpositivität. Wichtigste CCD-haltige Allergene in den Giften sind die Hyaluronidasen. Spezifische Kreuzreaktionen über die Hyaluronidasepeptide sind vergleichsweise selten, wobei sich im Wespengift die Hyaluronidase nach Berücksichtigung von CCDs nur als Minorallergen erweist. In-vitro-Tests mit fucosylierten pflanzlichen Glykoproteinen (z. B. Bestimmung der spezifischen IgE-Antikörper im CAP-System auf Bromelain) liefern im Routinebetrieb wertvolle Informationen über die Präsenz CCD-spezifischer Antikörper in einzelnen Sera, schließen aber bei positivem Ergebnis (70–80% aller doppelt positiven Sera) eine echte Doppelsensibilisierung nicht zwingend aus. Eine genaue Abklärung ist derzeit nur über reziproke Inhibitionsexperimente unter Einschluss fucosylierter pflanzlicher Glykoproteine möglich. Eine erhebliche Vereinfachung würde die Serodiagnostik auf Basis CCD-freier rekombinanter Allergene bedeuten.

Schlüsselwörter

Hyaluronidase Hymenopteren Insektengiftallergie Kreuzreaktion Kreuzreaktive Kohlenhydratdeterminanten 

Cross-reactivity to honeybee and wasp venom

Abstract

About 30–40% of patients with insect venom allergy have IgE antibodies reacting with both honeybee and Vespula venom. Apart from true double sensitization, IgE against cross-reactive carbohydrate determinants (CCDs, alpha1,3-fucosylated N-glycans) with low clinical relevance is the most frequent and often only cause for the multiple reactivity. Venom hyaluronidases have been identified as the most important allergens displaying CCDs, whereas cross-reactions through the hyaluronidases’ peptide backbones are less common. If IgE binding to CCDs is disregarded, Vespula venom hyaluronidase is only a minor allergen. In-vitro tests using fucosylated plant glycoproteins (e.g. assessment of specific IgE antibodies by CAP-FEiA to bromelain) are helpful in identifying sera containing CCD-specific IgE, although a positive result (occurring in 70–80% of all double-positive sera) does not reliably exclude true double-sensitization. Reciprocal in-vitro inhibition including non-venom inhibitor proteins rich in CCDs is the method of choice to discriminate between double-sensitization and cross-reactivity. Future in-vitro diagnosis will be markedly improved when recombinant allergens lacking CCDs become commercially available.

Keywords

Cross-reactive carbohydrate determinants Cross reactions Hyaluronidase Hymenoptera Insect venom allergy 

Literatur

  1. 1.
    Aalberse RC, Koshte V, Clemens JGJ (1981) Cross-reactions between vegetable food, pollen and bee venom due to IgE antibodies to a ubiquitous carbohydrate determinant. Int Arch Allergy Appl Immunol 66: 259–260Google Scholar
  2. 2.
    Altmann F (2007) The role of protein glycosylation in allergy. Int Arch Allergy Immunol 142: 99–115CrossRefPubMedGoogle Scholar
  3. 3.
    Bencurova M, Hemmer W, Focke-Tejkl M et al. (2004) Specificity of IgG and IgE antibodies against plant and insect glycoprotein glycans determined with artificial glycoforms of human transferrin. Glycobiology 14: 457–466CrossRefPubMedGoogle Scholar
  4. 4.
    Broichmann PW, Kästner H, Kalveram KJ (1992) Pseudopolyvalent immediate-type sensitization within the meaning of cross-allergy between bee and wasp venom, pollen, vegetable foods and crustaceans. Allergologie 15: 295–299Google Scholar
  5. 5.
    Ebo DG, Hagendorens MM, Bridts CH et al. (2004) Sensitization to cross-reactive carbohydrate determinants and the ubiquitous protein profilin: mimickers of allergy. Clin Exp Allergy 34: 137–144CrossRefPubMedGoogle Scholar
  6. 6.
    Egner W, Ward C, Brown DL, Ewan PW (1998) The frequency and clinical significance of specific IgE to both wasp (Vespula) and honey-bee (Apis) venoms in the same patient. Clin Exp Allergy 28: 26–34CrossRefPubMedGoogle Scholar
  7. 7.
    Fötisch K, Vieths S (2001) N- and O-linked oligosaccharides of allergenic glycoproteins. Glycoconj J 18: 373–390CrossRefPubMedGoogle Scholar
  8. 8.
    Hemmer W, Focke M, Kolarich D et al. (2001) Antibody binding to venom carbohydrates is a frequent cause for double positivity to honeybee and yellow jacket venom in patients with stinging-insect allergy. J Allergy Clin Immunol 108: 1045–1052CrossRefPubMedGoogle Scholar
  9. 9.
    Hemmer W, Focke M, Kolarich D et al. (2004) Identification by immunoblot of venom glycoproteins displaying immunoglobulin E-binding N-glycans as cross-reactive allergens in honeybee and yellow jacket venom. Clin Exp Allergy 34: 460–469CrossRefPubMedGoogle Scholar
  10. 10.
    Hemmer W, Jin C, Focke M et al. (2007) IgE reactivity with peptid versus carbohydrate epitopes on yellow jacket venom hyaluronidase and specific cross-reactivity with hyaluronidase from honeybee venom. Allergy 62 (Suppl 83): 112Google Scholar
  11. 11.
    Hoffman DR, Shipman WH, Babin D (1977) Allergens in bee venom II. Two new high molecular weight allergenic specificities. J Allergy Clin Immunol 59: 147–153CrossRefPubMedGoogle Scholar
  12. 12.
    Hoffman DR, Wood CL (1984) Allergens in hymenoptera venom XI: Isolation of protein allergens from Vespula maculifrons (yellowjacket) venom. J Allergy Clin Immunol 74: 93–103CrossRefPubMedGoogle Scholar
  13. 13.
    Hoffman DR (2006) Hymenoptera venom allergens. Clin Rev Allergy Immunol 30: 109–128CrossRefPubMedGoogle Scholar
  14. 14.
    Jappe U, Raulf-Heimsoth M, Hoffmann M et al. (2006) In vitro hymenoptera venom allergy diagnosis: improved by screening for cross-reactive carbohydrate determinants and reciprocal inhibition. Allergy 61: 1220–1229CrossRefPubMedGoogle Scholar
  15. 15.
    Jin C, Hantusch B, Hemmer W et al. (in press) Affinity of IgE and IgG against cross-reactive carbohydrate determinants on plant and insect glycoproteins. J Allergy Clin ImmunolGoogle Scholar
  16. 16.
    Kettner A, Henry H, Hughes GJ et al. (1999) IgE and T-cell responses to high-molecular weight allergens from bee venom. Clin Exp Allergy 29: 394–401CrossRefPubMedGoogle Scholar
  17. 17.
    Kolarich D, Léonard R, Hemmer W, Altmann F (2005) The N-glycans of yellow jacket venom hyaluronidases and the protein sequence of its major isoform in Vespula vulgaris. FEBS J 272: 5182–5190CrossRefPubMedGoogle Scholar
  18. 18.
    Kolarich D, Loos A, Léonard R et al. (2007) A proteomic study of the major allergens from yellow jacket venoms. Proteomics 7: 1615–1623CrossRefPubMedGoogle Scholar
  19. 19.
    Kochuyt A-M, Van Hoeyveld EM, Stevens EAM (2005) Prevalence and clinical relevance of specific IgE to pollen caused by sting induced specific IgE to cross reacting carbohydrate determinants in Hymenoptera venoms. Clin Exp Allergy 35: 441–447CrossRefPubMedGoogle Scholar
  20. 20.
    Kubelka V, Altmann F, März L (1995) The asparagine-linked carbohydrate of honeybee venom hyaluronidase. Glycoconj J 12: 77–83CrossRefPubMedGoogle Scholar
  21. 21.
    Mahler V, Gutgesell C, Valenta R, Fuchs T (2006) Natural rubber latex and hymenoptera venoms share Immunoglobin E-epitopes accounting for cross-reactive carbohydrate determinants. Clin Exp Allergy 36: 1446–1456CrossRefPubMedGoogle Scholar
  22. 22.
    Mari A (2002) IgE to cross-reactive carbohydrate determinants: analysis of the distribution and appraisal of the in vivo and in vitro reactivity. Int Arch Allergy Immunol 129: 286–295CrossRefPubMedGoogle Scholar
  23. 23.
    Marković-Housley Z, Miglierini G, Soldatova L et al. (2000) Crystal structure of hyaluronidase, a major allergen of bee venom. Structure 8: 1025–1035CrossRefPubMedGoogle Scholar
  24. 24.
    Müller U (1988) Insektenstichallergie: Klinik, Diagnostik und Therapie. Fischer, Stuttgart New YorkGoogle Scholar
  25. 25.
    Reisman RE, Wypych JI, Lazell MI (1987) Further studies in patients with both honeybee- and yellow-jacket-venom-specific IgE. Int Arch Allergy Appl Immunol 82: 190–194PubMedGoogle Scholar
  26. 26.
    Schäfer T, Przybilla B (1996) IgE antibodies to hymenoptera venoms in the serum are common in the general population and are related to indication of atopy. Allergy 51: 372–377CrossRefPubMedGoogle Scholar
  27. 27.
    Schlenvoigt G, Müller M, Jäger L, Wenz W (1996) In-vitro-Untersuchungen zum Auftreten von Doppelsensibilisierungen und ihre Charakterisierung bei Insektengiftallergikern. Allergologie 19: 461–464Google Scholar
  28. 28.
    Skov LK, Seppälä U, Coen JJ et al. (2006) Structure of recombinant Ves v 2 at 2.0 Angstrom resolution: structural analysis of an allergenic hyaluronidase from wasp venom. Acta Cryst 62: 595–604Google Scholar
  29. 29.
    Straumann F, Bucher C, Wüthrich B (2000) Double sensitization to honeybee and wasp venom: immunotherapy with one or with both venoms? Int Arch Allergy Immunol 123: 268–274CrossRefPubMedGoogle Scholar
  30. 30.
    Tretter V, Altmann F, Kubelka V et al. (1993) Fucose α1,3-linked to the core region of glycoprotein N-glycans creates an important epitope for IgE from honeybee venom allergic individuals. Int Arch Allergy Immunol 102: 259–266PubMedCrossRefGoogle Scholar

Copyright information

© Springer Medizin Verlag 2008

Authors and Affiliations

  1. 1.FAZ – Floridsdorfer AllergiezentrumWienÖsterreich

Personalised recommendations