Der Hautarzt

, Volume 57, Issue 8, pp 672–678 | Cite as

Ist der Psoriasis-Plaque-Test im Zeitalter der Biologics noch aktuell?

Leitthema

Zusammenfassung

Zur Prüfung von potenziell antipsoriatisch wirksamen Substanzen stehen Untersuchungen auf unterschiedlicher Ebene zur Verfügung (In-vitro-/Ex-vivo-Untersuchungen, Tiermodelle, humanpharmakologische Untersuchungen und klinische Studien). Gab es vor Jahren so gut wie kein valides tierexperimentelles Model für die Psoriasis, sind auf diesem Gebiet z. B. durch Knockout- oder Xenotransplantationsmodelle enorme Fortschritte erzielt worden. Trotzdem spiegeln diese Modelle noch nicht die Psoriasispathogenese in ihrem Facettenreichtum wider. Deshalb sind Screening-Modelle am Krankheitsbild Psoriasis nach wie vor notwendig. Dazu bietet sich auch im Zeitalter der Biologics der Psoriasis-Plaque-Test (PPT) an. Neben der Testung von Substanzen mit potenziell antipsoriatischer Aktivität kann eine Reihe zusätzlicher Fragen mit dem PPT beantwortet werden (z. B. Behandlungsfrequenz, Dosis-Wirkungs-Beziehung u. a.). Wichtige Voraussetzung zur Prüfung im PPT ist die Kenntnis relevanter toxikologischer und pharmakologischer Daten der Prüfsubstanzen. Der PPT ist relativ einfach durchzuführen, zeitlich nicht aufwändig und ermöglicht die Simultantestung mehrerer Substanzen. Alle im PPT ermittelten Ergebnisse müssen durch klinische Studien konfirmiert werden.

Schlüsselwörter

Antipsoriatische Aktivität In vivo-Untersuchung Psoriasis Psoriasis-Plaque-Test (PPT) Screening-Untersuchungen 

Is the psoriasis plaque test still relevant in the age of biologicals?

Abstract

A variety of approaches (in vitro-/ex vivo studies, animal models, human studies and clinical trials) are available to assess compounds with potential antipsoriatic properties. Over the past few years various rodent models that mirror aspects of psoriasis phenotypes and/or pathogenesis have been created (e. g. knockout rodents, xenotransplantation models). Unfortunately these animal models do not reflect the complete pathogenesis of psoriasis. Therefore, screening procedures involving psoriatic lesions in humans are necessary. Even in the era of biologicals, the psoriasis plaque test (PPT) remains an important in vivo tool. In addition to screening potential antipsoriatic substances, the PPT can help answer other questions (frequency of use, dose-response relationship). A prerequisite for correct performance of PPT is knowledge of the toxicological and pharmacological data of the investigational compounds. The PPT is relatively simple, not time-consuming and allows the simultaneous testing of multiple substance. All the results from PPT must be confirmed by controlled clinical trials.

Keywords

Antipsoriatic activity In vivo investigation Psoriasis Psoriasis plaque test (PPT) Screening investigations 

Notes

Interessenkonflikt

Es besteht kein Interessenkonflikt. Der korrespondierende Autor versichert, dass keine Verbindungen mit einer Firma, deren Produkt in dem Artikel genannt ist, oder einer Firma, die ein Konkurrenzprodukt vertreibt, bestehen. Die Präsentation des Themas ist unabhängig und die Darstellung der Inhalte produktneutral.

Literatur

  1. 1.
    Behrendt H, Korting HC (1990) Klinische Prüfung von erwünschten und unerwünschten topisch applizierbarer Glukokortikosteroide am Menschen. Hautarzt 41: 2–8PubMedGoogle Scholar
  2. 2.
    Berardesca E, Maibach HI (1988) Skin occlusion: treatment or drug-like device? Skin Pharmacol 1: 207–215PubMedGoogle Scholar
  3. 3.
    Bladon PT, Cooper NF, Wood EJ, Cunliffe WJ (1986) Biochemical markers in the mouse tail model of psoriasis. In: Marks R, Plewig G (eds) Skin models; models to study function and disease of skin. Springer, Berlin Heidelberg New York Tokyo, pp 172–182Google Scholar
  4. 4.
    Bollag E (1974) Therapeutic effects of an aromatic retinoic acid analog on chemical induced skin papillomas and carcinomas of mice. Eur J Cancer 10: 731–737PubMedGoogle Scholar
  5. 5.
    Christophers E, Mrowietz U (1995) The inflammatory infiltrate in psoriasis. Clin Dermatol 13: 131–135CrossRefPubMedGoogle Scholar
  6. 6.
    Dumas KJ, Scholtz JR (1972) The psoriasis bio-assay for topical corticosteroid activity. Acta Dermatol Venereol 52: 43–48Google Scholar
  7. 7.
    Geilen CC, Mrowietz U (2000) Lack of efficacy of topical mycophenolic acid in psoriasis vulgaris. J Am Acad Dermatol 42: 837–840CrossRefPubMedGoogle Scholar
  8. 8.
    Lindberg M, Johannesson A, Forslind B (1982) The effect of occlusive treatment on human skin. An electron microscopic study on epidermal morphology as affected by occlusion and dansyl chloride. Acta Dermatol Venereol 62: 1–5Google Scholar
  9. 9.
    Maibach HI, Lowe NJ (1985) Models in Dermatology 2, dermatopharmacology and toxicology. Karger, Basel München Paris London New York Tokyo SydneyGoogle Scholar
  10. 10.
    Marks J, Rogers S, Chadrik B, Shuster S (1981) Clearance of chronic plaque psoriasis by anthralin – subjective and objective assessment and comparison with photochemotherapy. Br J Dermatol 105: 96–99PubMedGoogle Scholar
  11. 11.
    Marks R, Barton SP (1989) Assessment of disease progress in psoriasis. Arch Dermatol 125: 235–240CrossRefPubMedGoogle Scholar
  12. 12.
    Mehlis S, Gordon KB (2004) From laboratory to clinic: rationale for biologic therapy. In: Menter A, Cather J (eds) Dermatologic clinics – psoriasis. Saunders. Philadelphia London Toronto Montreal Sydney Tokyo, pp 371–377Google Scholar
  13. 13.
    McCullough JL, Weinstein GD, Ziboh VA (1985) Cell kinetics in psoriasis. The use of animal and human skin models. In: Maibach HI, Lowe NJ (eds) Models in dermatology. Karger, Basel, pp 51–58Google Scholar
  14. 14.
    Moon RC (1993) Retinoids in experimental oncology. In: Hong WK, Lotan R (eds) Retinoids in oncology. Marcel Dekker, New York Basel Hong Kong, pp 109–125Google Scholar
  15. 15.
    Mrowietz U, Graeber M, Bräutigam M, et al. (1998) The novel ascomycin derivative SDZ AASM 981 is an effective anti-psoriatic compound when used topically under occlusion. Br J Dermatol 139: 992–996CrossRefPubMedGoogle Scholar
  16. 16.
    Newton JA, Boodle KM, Dowd PM, Greaves MW (1988) Topical NDGA (nordihydroguaiaretic acid) in psoriasis. Br J Dermatol 119: 404–406PubMedGoogle Scholar
  17. 17.
    Nieboer C, Bruynzeel DP, Boorsma DM (1987) The effect of occlusion of the skin with transdermal therapeutic system on Langerhans cells and in the induction of skin irritation. Arch Dermatol 123: 1499–1502CrossRefPubMedGoogle Scholar
  18. 18.
    Radeke HH, Ludwig RJ, Boehncke WH (2005) Experimental approaches to lymphocyte migration in dermatology in vitro and in vivo. Exp Dermatol 14: 641–666CrossRefPubMedGoogle Scholar
  19. 19.
    Sano S, Chan KS, Carbajal S et al. (2004) Stat3 links activated keratinocytes and immunocytes required for development of psoriasis in a novel transgenic mouse model. Nat Med 11: 43–49CrossRefPubMedGoogle Scholar
  20. 20.
    Savolainen L, Kontinen J, Alatalo E et al. (1998) Comparison of actual psoriasis surface area and the psoriasis area index by the human eye and machine vision methods in following the treatment of psoriasis. Acta Dermatol Venereol 78: 466–467CrossRefGoogle Scholar
  21. 21.
    Schaefer H, Redelmeier TE (1996) Skin barrier – principles of percutaneous absorption. Karger, Basel Freiburg Paris London New York New Delhi Bangkok Singapore Tokyo SydneyGoogle Scholar
  22. 22.
    Schön MP (1999) Animal models in psoriasis – What can we learn form them? J Invest Dermatol 112: 405–410CrossRefPubMedGoogle Scholar
  23. 23.
    Schön MP, Boehncke WH (2005) Psoriasis. N Engl J Med 352: 1899–1912CrossRefPubMedGoogle Scholar
  24. 24.
    Van de Kerkhof, Salonen SH (2003) Large-scale European survey of quality of life in patients with psoriasis: second phase results on quality of life and treatment reported by 7,525 members of European Psoriasis Patient Associations.http://www.psori.fi/doc/patient_survey_2nd_phase(2003).pdf
  25. 25.
    Van Duijnhoven MW, Körver JE, Vissers WH et al. (2006) Effect of calcipotriol on epidermal cell populations in alefacept-treated psoriatic lesions. J Eur Acad Dermatol Venereol 20: 27–33CrossRefPubMedGoogle Scholar
  26. 26.
    Van Scott EJ (1986) Lesional heterogeneity in psoriasis and therapeutic relevance. In: Farber EM, Nall LM, Morrhenn V, Jacobs PH (eds) Proceedings of the Forth International Symposium. Stanford, pp 6–11Google Scholar
  27. 27.
    Weinstein GD, McCullough JL, Eaglestein WH et al. (1981) A clinical screening program for topical chemotherapeutic drugs in psoriasis. Arch Dermatol 117: 388–393CrossRefPubMedGoogle Scholar
  28. 28.
    Wendt H, Frosch PJ (1982) Klinisch-pharmakologische Modelle zur Prüfung von Coticoidexterna. Karger, Basel München Paris London New York Tokyo SydneyGoogle Scholar
  29. 29.
    Winterfield LS, Menter A (2004) Infliximab. Dermatol Ther 17: 409–426CrossRefPubMedGoogle Scholar
  30. 30.
    Wolff HH, Kreusch JF, Wilhelm KP, Klaus S (1993) The psoriasis plaque test and topical corticosteroids: evaluation by computerized laser profilometry. In: Korting HC, Maibach HI (eds) Topical glucocorticosteroids with increased benefit/risk ratio. Karger, Basel, pp 107–113Google Scholar
  31. 31.
    Wozel G, Barth J (1986) Fluocinolonacetonid und Psoriasis – kontinuierliche oder alternierende Therapie? Dermatol Monatsschr 172: 620–623PubMedGoogle Scholar
  32. 32.
    Wozel G, Barth J (1989) Untersuchungen zur Wirksamkeit von topischer Corticosteroidkombination bei Psoriasis. Z Klien Med 44: 2279–2281Google Scholar
  33. 33.
    Wozel G. Barth J (1986) Vergleichende Untersuchungen über die Wirksamkeit topischer Steroide bei Psoriasis. Dermatol Monatsschr 172: 550–553PubMedGoogle Scholar
  34. 34.
    Wozel G (1994) Effektivität der Kombinationsbehandlung mit Calcipotriol und Fluocinolonacetonid im Psoriasis-Plaque-Test. Akt Dermatol 20: 155–158Google Scholar
  35. 35.
    Wozel G (1993) Einschätzung von Calcipotriol (MC 903) im Psoriasis-Plaque-Test. Dermatol Monatsschr 179: 209–211Google Scholar
  36. 36.
    Wrench R (1985) Assessing drugs for psoriasiform diseases and their antiparakeratotic mechanisms using the mouse tail test. In: Maibach HI, Lowe NJ (eds) Models in dermatology. Karger, Basel, pp 76–91Google Scholar
  37. 37.
    Zenz R, Eferl R, Kenner L et al. (2005) Psoriasis-like skin disease and arthritis caused by inducible epidermal deletion of Jun proteins. Nature 437: 369–375CrossRefPubMedGoogle Scholar

Copyright information

© Springer Medizin Verlag 2006

Authors and Affiliations

  1. 1.Klinik und Poliklinik für DermatologieUniversitätsklinikum Carl Gustav Carus Dresden an der Technischen Universität DresdenDresden

Personalised recommendations