Der Hautarzt

, Volume 57, Issue 7, pp 603–609

Psoriasis-SCID-Maus-Modell

Übersicht
  • 112 Downloads

Zusammenfassung

Die Psoriasis ist durch einen komplexen Phänotyp, eine polygenetische Determinierung und eine multifaktorielle Genese charakterisiert. Mehrere sog. Psoriasistiermodelle konnten bislang lediglich einzelne Aspekte dieser Erkrankung reproduzieren. Erst ein xenogener Transplantationsansatz, wobei Haut von Patienten auf Mäuse mit einem schweren kombinierten Immundefekt (SCID) übertragen wird, erfüllte die Anforderungen an ein Psoriasismodell. Dieses sog. Psoriasis-SCID-Maus-Modell hat sich in den letzten 10 Jahren nicht nur als aussagekräftiger Ansatz für Pathogenesestudien, sondern auch als Instrument zur Medikamentenentwicklung erwiesen, dem ein hoher prädiktiver Wert zukommt.

Schlüsselwörter

Psoriasis Tiermodelle SCID-Maus Therapie Pathogenese 

Psoriasis SCID-mouse model

Abstract

Psoriasis is characterized by a complex phenotype and pathogenesis along with polygenic determination. Several psoriasis animal models have only been able to incompletely reproduce the disease. A xenogeneic transplantation approach, grafting skin from psoriatic patients onto mice with a severe combined immunodeficiency (SCID), was the first to meet the criteria for a psoriasis model. During the last 10 years, this psoriasis SCID-mouse model not only allowed telling experiments focusing on pathogenetic aspects, but also proved being a powerful tool for drug discovery with a good predictive value.

Keywords

Psoriasis Animal model SCID mouse Therapy Pathogenesis 

Literatur

  1. 1.
    Asadullah K, Sabat R, Friedrich M et al. (2004) Interleukin-10: an important immunoregulatory cytokine with major impact on psoriasis. Curr Drug Targets Inflamm Allergy 3:185–192Google Scholar
  2. 2.
    Boehncke WH (1996) Psoriasis and bacterial superantigens — formal or causal correlation? Trends Microbiol 4:485–489Google Scholar
  3. 3.
    Boehncke WH (1997) Psoriasis im Tiermodell. Hautarzt 48:707–713Google Scholar
  4. 4.
    Boehncke WH (1999) The SCID-hu xenogeneic transplantation model: complex but telling. Arch Dermatol Res 291:367–373Google Scholar
  5. 5.
    Boehncke WH (2004) The alpha-defensins HNP-1 and HNP-2 are dominant self-peptides presented by HLA class-II molecules in lesional psoriatic skin. Eur J Dermatol 14:142–145Google Scholar
  6. 6.
    Boehncke WH, Dressel D, Zollner TM, Kaufmann R (1996) Pulling the trigger on psoriasis. Nature 379:777Google Scholar
  7. 7.
    Boehncke WH, Hardt-Weinelt K, Nilsson H et al. (2001) Antagonistic effects of the staphylococcal enterotoxin a mutant, SEA(F47A/D227A), on psoriasis in the SCID-hu xenogeneic transplantation model. J Invest Dermatol 116:596–601Google Scholar
  8. 8.
    Boehncke WH, Kock M, Hard-Weinelt K, Wolter M (1999) The SCID-hu xenogenieic transplantation model allows screening of anti-psoriatic drugs. Arch Dermatol Res 291:104–106Google Scholar
  9. 9.
    Boehncke WH, Schön MP (2003) Interfering with leukocyte rolling — a promising therapeutic approach in inflammatory skin disorders? Trends Pharmacol Sci 24:49–52Google Scholar
  10. 10.
    Boehncke WH, Sterry W, Hainzl A et al. (1994) Psoriasiform architecture of murine epidermis overlying human psoriatic dermis transplanted onto SCID mice. Arch Dermatol Res 286:325–330Google Scholar
  11. 11.
    Boehncke WH, Zollner TM, Dressel D, Kaufmann R (1997) Induction of psoriasiform inflammation by a bacterial superantigen in the SCID-hu xenogeneic transplantation model. J Cutan Pathol 14:1–7Google Scholar
  12. 12.
    Bosma GC, Custer RP, Bosma MJ (1983) A severe combined immunodeficiency mutation in the mouse. Nature 301:527–530Google Scholar
  13. 13.
    Boyman O, Hefti HP, Conrad C et al. (2004) Spontaneous development of psoriasis in a new animal model shows an essential role for resident T cells and tumor necrosis factor-alpha. J Exp Med 199:731–736Google Scholar
  14. 14.
    Chaudhari U, Romano P, Mulcahy LD et al. (2001) Efficacy and safety of infliximab monotherapy for plaque-type psoriasis: a randomised trial. Lancet 357:1842–1847Google Scholar
  15. 15.
    Christophers E (1996) The immunopathology of psoriasis. Int Arch Allergy Immunol 110:199–206Google Scholar
  16. 16.
    Dam TN, Kang S, Nickoloff BJ, Voorhees JJ (1999) 1α,25-Dihydroxycholecalciferol and Cyclosporine supress induction an promote resolution of psoriasis in human skin grafts transplanted on to SCID mice. D J Invest Dermatol 113:1082–1989Google Scholar
  17. 17.
    Ellis CN, Varani J, Fisher GJ et al. (2000) Troglitazone improves psoriasis and normalizes models of proliferative skin disease. Arch Dermatol 136:609–616Google Scholar
  18. 18.
    Fehniger TA, Caligiuri MA (2001) Interleukin-15: biology and relevance to human disease. Blood 97:14–32Google Scholar
  19. 19.
    Gilhar A, David M, Ullmann Y et al. (1997) T-Lymphocyte dependence of psoriatic pathology in human psoriatic skin grafted to SCID mice. J Invest Dermatol 109:283–288Google Scholar
  20. 20.
    Gilhar A, Ullmann Y, Herner H et al. (2002) Psoriasis is mediated by a cutaneus defect triggered by activated immunocytes: induction of psoriasis by cells with natural killer receptors. J Invest Dermatol 119:384–391Google Scholar
  21. 21.
    Haftek M, Ortonne JP, Staquet MJ et al. (1981) Normal and psoriatic human skin grafts on „nude“ mice: morphological and immunohistochemical studies. J Invest Dermatol 76:48–52Google Scholar
  22. 22.
    Kaufmann R, Mielke V, Reimann J et al. (1993) Cellular and molecular composition of human skin in long-term xenografts on SCID mice. Exp Dermatol 2:209–216Google Scholar
  23. 23.
    Krueger GG, Manning DD, Malouf J, Ogden B (1975) Long-term maintenance of psoriatic human skin on congenitally athymic (nude) mice. J Invest Dermatol 64:307–312Google Scholar
  24. 24.
    Kupper TS (2003) Immunologic targets in psoriasis. N Engl J Med 349:1987–1990Google Scholar
  25. 25.
    Lebwohl M,, Tyring SK, Hamilton TK et al. (2003) A novel targeted T-cell modulator, efalizumab, for plaque psoriasis. N Engl J Med 349:2004–2013Google Scholar
  26. 26.
    Leonardi CL, Powers JL, Matheson RT et al. (2003) Etanercept as monotherapy in patients with psoriasis. N Engl J Med 349:2014–2022Google Scholar
  27. 27.
    Mueller W, Herrmann B (1979) Cyclosporin A for psoriasis. N Engl J Med 301:555Google Scholar
  28. 28.
    Nickoloff BJ, Kunkel SL, Burdick M, Strieter RM (1995) Severe combined immunodeficiency mouse and human psoriatic skin chimeras: validation of a new animal model. Am J Pathol 146:580–588Google Scholar
  29. 29.
    Nickoloff BJ, Wrone-Smith T (1999) Injection of pre-psoriatic skin with CD4+ T cells induces psoriasis. Am J Pathol 155:145–158Google Scholar
  30. 30.
    Raychaudhuri SP, Raychaudhuri SK (2004) Role of NGF and neurogenic inflammation in the pathogenesis of psoriasis. Prog Brain Res 146:433–437Google Scholar
  31. 31.
    Raychaudhuri SP, Sanyal M, Raychaudhuri SK et al. (2001) Severe combined immunodeficiency mouse-human skin chimeras: a unique animal model for the study of psoriasis and cutaneous inflamation. Br J Dermatol 144:931–939Google Scholar
  32. 32.
    Raychaudhuri SP, Sanyal M, Weltman H, Kundu-Raychaudhuri S (2004) K252a, a high-affinity nerve growth factor receptor blocker, improves psoriasis: an in vivo study using the severe combined immunodeficient mouse-human skin model. J Invest Dermatol 122:812–819Google Scholar
  33. 33.
    Schön MP (1999) Animal models of psoriasis — what can we learn from them? J Invest Dermatol 112:405–410Google Scholar
  34. 34.
    Schön MP, Boehncke WH (2005) Psoriasis — clinics, genetics, immunopathogenesis and therapeutic perspectives. N Engl J Med (in press)Google Scholar
  35. 35.
    Schön MP, Detmar M, Parker CM (1997) Murine psoriasis-like disorder induced by naïve CD4+ T-cells. Nat Med 3:183–188Google Scholar
  36. 36.
    Schön MP, Krahn T, Schön M et al. (2002) Efomycine M, a new specific inhibitor of selectin, impairs leukocyte adhesion and alleviates cutaneous inflammation. Nat Med 8:366–372Google Scholar
  37. 37.
    Villadsen LS, Schuurman J, Beurksens F et al. (2003) Resolution of psoriasis upon blockade of IL-15 biological activity in a xenograft mouse model. J Clin Invest 112:1571–1580Google Scholar
  38. 38.
    Wrone-Smith T, Nickoloff BJ (1996) Dermal injection of immunocytes induces psoriasis. J Clin Invest 98:1878–1887Google Scholar
  39. 39.
    Zeigler M, Chi Y, Tumas DB et al. (2001) Anti-CD11a ameliorates disease in the human psoriatic skin-SCID mouse transplant model: comparison of antibody to CD11a with cyclosporine A and clobetasol propionate. Lab Invest 81:1253–1261Google Scholar
  40. 40.
    Zollner TM, Podda M, Pien C et al. (2002) Proteasome inhibition reduces superantigen-mediated T cell activation and the severity of psoriasis in a SCXID-hu model. J Clin Invest 109:671–679Google Scholar
  41. 41.
    Zollner TM, Renz H, Igney FH, Asadullah K (2004) Animal models of T-cell-mediated skin diseases. Bio Essays 26:693–696Google Scholar

Copyright information

© Springer Medizin Verlag 2005

Authors and Affiliations

  1. 1.Zentrum der Dermatologie und VenerologieJohann Wolfgang Goethe-UniversitätFrankfurt am Main
  2. 2.Zentrum der Dermatologie und VenerologieJohann Wolfgang Goethe-UniversitätFrankfurt am Main

Personalised recommendations