Advertisement

Der Hautarzt

, Volume 56, Issue 11, pp 1048–1055 | Cite as

Antibakterielle photodynamische Therapie

Ein neues Verfahren zur Behandlung von oberflächlichen bakteriellen Infektionen?
  • T. Maisch
  • R.-M. Szeimies
  • N. Lehn
  • C. Abels
Übersichten

Zusammenfassung

Grundlage der photodynamischen Inaktivierung von Bakterien ist die Generierung von reaktiven Sauerstoffspezies durch einen zellulär lokalisierten Photosensibilisator in Anwesenheit von Sauerstoff, der durch Licht der entsprechenden Wellenlänge angeregt wird. Im Hinblick auf mögliche Indikationen in der Dermatologie wird die Anwendung der photodynamischen Inaktivierung von Bakterien bei lokalen Haut- und Wundinfektionen oder zur Reduktion einer nosokomialen Besiedelung multiresistenter Bakterien von Hautarealen diskutiert. Der entscheidende Vorteil bei der lokalen Applikation von Photosensibilisatoren mit anschließender Bestrahlung liegt darin, dass unabhängig vom Resistenzmuster eines Bakteriums eine Inaktivierung ähnlich wie bei einem Antiseptikum erfolgt. In der vorliegenden Arbeit werden die physikalisch-chemischen sowie biologischen Grundlagen der antibakteriellen photodynamischen Therapie und mögliche dermatologische Indikationen beschrieben.

Schlüsselwörter

MRSA PDT Reaktive Sauerstoffspezies Akne vulgaris „wound healing“ 

Antibacterial photodynamic therapy

A new treatment for bacterial skin diseases?

Abstract

The basis of “antibacterial photodynamic therapy” involves the killing of bacteria by reactive oxygen species in the presence of a photosensitizer and light. Possible dermatologic indications include inactivation of bacteria in skin and wound infections and reduction in density of nosocomial multi-resistant infections. The chief advantage of antibacterial photodynamic therapy is that regardless of the resistance pattern of a bacteria, inactivation can be achieved, analogous to the use of antiseptics. The aim of the present review is to describe the physicochemical and biological mechanisms of antibacterial photodynamic therapy as well as possible clinical indications in dermatology.

Keywords

MRSA PDT reactive oxygen species Acne vulgaris Wound healing 

Notes

Interessenkonflikt:

Der korrespondierende Autor versichert, dass keine Verbindungen mit einer Firma, deren Produkt in dem Artikel genannt ist, oder einer Firma, die ein Konkurrenzprodukt vertreibt, bestehen.

Literatur

  1. 1.
    Angelini G, Vena GA, Meneghini CL (1985) Allergic contact dermatitis to some medicaments. Contact Dermatitis 12:263–269PubMedGoogle Scholar
  2. 2.
    Aveline B (2001) Primary processes in photosensitization mechanisms. Comprehensive Series Photosci 2:17–34Google Scholar
  3. 3.
    Barber MRDM (1948) Infection by penicillin-resistant staphylococci. Lancet 11:641–644Google Scholar
  4. 4.
    Berthiaume F, Reiken SR, Toner M et al. (1994) Antibody-targeted photolysis of bacteria in vivo. Biotechnology (NY) 12:703–706Google Scholar
  5. 5.
    Bertoloni G, Rossi F, Valduga G et al. (1992) Photosensitizing activity of water- and lipid-soluble phthalocyanines on prokaryotic and eukaryotic microbial cells. Microbios 71:33–46PubMedGoogle Scholar
  6. 6.
    Boyle-Vavra S, Labischinski H, Ebert CC et al. (2001) A spectrum of changes occurs in peptidoglycan composition of glycopeptide-intermediate clinical Staphylococcus aureus isolates. Antimicrob Agents Chemother 45:280–287PubMedGoogle Scholar
  7. 7.
    Chambers HF (1997) Methicillin resistance in staphylococci: molecular and biochemical basis and clinical implications. Clin Microbiol Rev 10:781–791PubMedGoogle Scholar
  8. 8.
    Chapple RM, Inglis B, Stewart PR (1992) Lethal and mutational effects of solar and UV radiation on Staphylococcus aureus. Arch Microbiol 157:242–248PubMedGoogle Scholar
  9. 9.
    Cookson BD (1998) The emergence of mupirocin resistance: a challenge to infection control and antibiotic prescribing practice. J Antimicrob Chemother 41:11–18PubMedGoogle Scholar
  10. 10.
    Ehrenberg B, Malik Z, Nitzan Y (1985) Fluorescence spectral changes of hematoporphyrin derivative upon binding to lipid vesicles, Staphylococcus aureus and Escherichia coli cells. Photochem Photobiol 41:429–435PubMedGoogle Scholar
  11. 11.
    Fridkin SK (2001) Vancomycin-intermediate and -resistant Staphylococcus aureus: what the infectious disease specialist needs to know. Clin Infect Dis 32:108–115PubMedGoogle Scholar
  12. 12.
    Friedrich CL, Moyles D, Beveridge TJ, Hancock RE (2000) Antibacterial action of structurally diverse cationic peptides on gram-positive bacteria. Antimicrob Agents Chemother 44:2086–2092PubMedGoogle Scholar
  13. 13.
    Gisby J, Bryant J (2000) Efficacy of a new cream formulation of mupirocin: comparison with oral and topical agents in experimental skin infections. Antimicrob Agents Chemother 44:255–260PubMedGoogle Scholar
  14. 14.
    Halliwell B, Gutteridge JM (1984) Lipid peroxidation, oxygen radicals, cell damage, and antioxidant therapy. Lancet 1:1396–1397PubMedGoogle Scholar
  15. 15.
    Hamblin MR, O’Donnell DA, Murthy N et al. (2002) Rapid control of wound infections by targeted photodynamic therapy monitored by in vivo bioluminescence imaging. Photochem Photobiol 75:51–57PubMedGoogle Scholar
  16. 16.
    Hamblin MR, Zahra T, Contag CH et al. (2003) Optical monitoring and treatment of potentially lethal wound infections in vivo. J Infect Dis 187:1717–1725PubMedGoogle Scholar
  17. 17.
    Harder KJ, Nikaido H, Matsuhashi M (1981) Mutants of Escherichia coli that are resistant to certain beta-lactam compounds lack the ompF porin. Antimicrob Agents Chemother 20:549–552PubMedGoogle Scholar
  18. 18.
    Harkaway KS, McGinley KJ, Foglia AN et al. (1992) Antibiotic resistance patterns in coagulase-negative staphylococci after treatment with topical erythromycin, benzoyl peroxide, and combination therapy. Br J Dermatol 126:586–590PubMedGoogle Scholar
  19. 19.
    Hoger PH (1998) Topical antibiotics and antiseptics. Agents, spectrum, adverse effects. Hautarzt 49:331–347PubMedGoogle Scholar
  20. 20.
    Hoiby N, Jarlov JO, Kemp M et al. (1997) Excretion of ciprofloxacin in sweat and multiresistant Staphylococcus epidermidis. Lancet 349:167–169PubMedGoogle Scholar
  21. 21.
    Hongcharu W, Taylor CR, Chang Y et al. (2000) Topical ALA-photodynamic therapy for the treatment of acne vulgaris. J Invest Dermatol 115:183–192PubMedGoogle Scholar
  22. 22.
    Itoh Y, Ninomiya Y, Tajima S, Ishibashi A (2001) Photodynamic therapy of acne vulgaris with topical delta-aminolaevulinic acid and incoherent light in Japanese patients. Br J Dermatol 144:575–579PubMedGoogle Scholar
  23. 23.
    Jekler J (1992) Phototherapy of atopic dermatitis with ultraviolet radiation. Acta Derm Venereol Suppl (Stockh) 171:1–37Google Scholar
  24. 24.
    Jekler J, Bergbrant IM, Faergemann J, Larko O (1992) The in vivo effect of UVB radiation on skin bacteria in patients with atopic dermatitis. Acta Derm Venereol 72:33–36PubMedGoogle Scholar
  25. 25.
    Jevons MP (1961) „Celbenin“-resistant Staphylococci. Br Med J 124–126Google Scholar
  26. 26.
    Jones LR, Grossweiner LI (1994) Singlet oxygen generation by Photofrin in homogeneous and light-scattering media. J Photochem Photobiol B 26:249–256PubMedGoogle Scholar
  27. 27.
    Koning S, van der Wouden JC (2004) Treatment for impetigo. Bmj 329:695–696PubMedGoogle Scholar
  28. 28.
    Koning S, Verhagen AP, van Suijlekom-Smit LW et al. (2004) Interventions for impetigo. Cochrane Database Syst Rev: CD003261Google Scholar
  29. 29.
    Kresken MHD, Studiengruppe (2000) Resistenzentwicklung bei klinisch wichtigen Infektionserregern gegenüber Chemotherapeutika in Mitteleuropa. Chemotherapie J 9:1–36Google Scholar
  30. 30.
    Krutmann J, Ahrens C, Roza L, Arlett CF (1996) The role of DNA damage and repair in ultraviolet B radiation-induced immunomodulation: relevance for human photocarcinogenesis. Photochem Photobiol 63:394–396PubMedGoogle Scholar
  31. 31.
    Maisch T, Feng X, Love B et al. (2003) Photodynamic inactivation of MRSA Staphylococcus aureus. Arch Dermatol Res 294:491 (abstract)Google Scholar
  32. 32.
    McLinn S (1990) A bacteriologically controlled, randomized study comparing the efficacy of 2% mupirocin ointment (Bactroban) with oral erythromycin in the treatment of patients with impetigo. J Am Acad Dermatol 22:883–885PubMedGoogle Scholar
  33. 33.
    Menezes S, Capella MA, Caldas LR (1990) Photodynamic action of methylene blue: repair and mutation in Escherichia coli. J Photochem Photobiol B 5:505–517PubMedGoogle Scholar
  34. 34.
    Minnock A, Vernon DI, Schofield J et al. (1996) Photoinactivation of bacteria. Use of a cationic water-soluble zinc phthalocyanine to photoinactivate both gram-negative and gram-positive bacteria. J Photochem Photobiol B 32:159–164PubMedGoogle Scholar
  35. 35.
    Moan J, Berg K (1991) The photodegradation of porphyrins in cells can be used to estimate the lifetime of singlet oxygen. Photochem Photobiol 53:549–553PubMedGoogle Scholar
  36. 36.
    Mossman BT (1983) In vitro approaches for determining mechanisms of toxicity and carcinogenicity by asbestos in the gastrointestinal and respiratory tracts. Environ Health Perspect 53:155–161PubMedGoogle Scholar
  37. 37.
    Musher DM, Lamm N, Darouiche RO et al. (1994) The current spectrum of Staphylococcus aureus infection in a tertiary care hospital. Medicine (Baltimore) 73:186–208Google Scholar
  38. 38.
    Nikaido H, Vaara M (1985) Molecular basis of bacterial outer membrane permeability. Microbiol Rev 49:1–32PubMedGoogle Scholar
  39. 39.
    Nitzan Y, Ashkenazi H (2001) Photoinactivation of Acinetobacter baumannii and Escherichia coli B by a cationic hydrophilic porphyrin at various light wavelengths. Curr Microbiol 42:408–414PubMedGoogle Scholar
  40. 40.
    Pfeltz RF, Singh VK, Schmidt JL et al. (2000) Characterization of passage-selected vancomycin-resistant Staphylococcus aureus strains of diverse parental backgrounds. Antimicrob Agents Chemother 44:294–303PubMedGoogle Scholar
  41. 41.
    Pollock B, Turner D, Stringer MR et al. (2004) Topical aminolaevulinic acid-photodynamic therapy for the treatment of acne vulgaris: a study of clinical efficacy and mechanism of action. Br J Dermatol 151:616–622PubMedGoogle Scholar
  42. 42.
    Raab O (1900) Ueber die Wirkung fluorizierender Stoffe auf Infusorien. Z Biologie 39:524–546Google Scholar
  43. 43.
    Reddi E, Ceccon M, Valduga G et al. (2002) Photophysical properties and antibacterial activity of meso-substituted cationic porphyrins. Photochem Photobiol 75:462–470PubMedGoogle Scholar
  44. 44.
    Rietschel RL (1994) Dermatologic manifestations of antimicrobial adverse reactions with special emphasis on topical exposure. Infect Dis Clin North Am 8:607–615PubMedGoogle Scholar
  45. 45.
    Roland KL, Esther CR, Spitznagel JK (1994) Isolation and characterization of a gene, pmrD, from Salmonella typhimurium that confers resistance to polymyxin when expressed in multiple copies. J Bacteriol 176:3589–3597PubMedGoogle Scholar
  46. 46.
    Rossney AS, Keane CT (2002) Strain variation in the MRSA population over a 10-year period in one Dublin hospital. Eur J Clin Microbiol Infect Dis 21:123–126PubMedGoogle Scholar
  47. 47.
    Schafer M, Schmitz C, Horneck G (1998) High sensitivity of Deinococcus radiodurans to photodynamically-produced singlet oxygen. Int J Radiat Biol 74:249–253PubMedGoogle Scholar
  48. 48.
    Schempp CM, Effinger T, Czech W et al. (1997) Characterization of nonresponders in high dosage UVA1 therapy of acute exacerbated atopic dermatitis. Hautarzt 48:94–99PubMedGoogle Scholar
  49. 49.
    Scherrer R, Gerhardt P (1971) Molecular sieving by the Bacillus megaterium cell wall and protoplast. J Bacteriol 107:718–735PubMedGoogle Scholar
  50. 50.
    Schmitz FJ, Fluit AC, Hafner D et al. (2000) Development of resistance to ciprofloxacin, rifampin, and mupirocin in methicillin-susceptible and -resistant Staphylococcus aureus isolates. Antimicrob Agents Chemother 44:3229–3231PubMedGoogle Scholar
  51. 51.
    Sievert D (2002) Staphylococcus aureus resistant to Vancomycin. Morbidity and Mortality Weekly Report, Center Disease Control 51:565–567Google Scholar
  52. 52.
    Szeimies RM, Karrer S, Abels C et al. (1996) 9-Acetoxy-2,7,12,17-tetrakis-(beta-methoxyethyl)-porphycene (ATMPn), a novel photosensitizer for photodynamic therapy: uptake kinetics and intracellular localization. J Photochem Photobiol B 34:67–72PubMedGoogle Scholar
  53. 53.
    Tappeiner HJA (1904) Über die Wirkung der photodynamischen (fluoreszierenden) Stoffe auf Infusorien. Dtsch Arch Klin Med 80:427–487Google Scholar
  54. 54.
    Vaara M, Vaara T (1981) Outer membrane permeability barrier disruption by polymyxin in polymyxin-susceptible and -resistant Salmonella typhimurium. Antimicrob Agents Chemother 19:578–583PubMedGoogle Scholar
  55. 55.
    Vaara M, Vaara T (1983) Polycations as outer membrane-disorganizing agents. Antimicrob Agents Chemother 24:114–122PubMedGoogle Scholar
  56. 56.
    Vaara M, Vaara T, Jensen M et al. (1981) Characterization of the lipopolysaccharide from the polymyxin-resistant pmrA mutants of Salmonella typhimurium. FEBS Lett 129:145–149PubMedGoogle Scholar
  57. 57.
    Valduga G, Breda B, Giacometti GM et al. (1999) Photosensitization of wild and mutant strains of Escherichia coli by meso-tetra (N-methyl-4-pyridyl)porphine. Biochem Biophys Res Commun 256:84–88PubMedGoogle Scholar
  58. 58.
    Van Ginkel CJ, Bruintjes TD, Huizing EH (1995) Allergy due to topical medications in chronic otitis externa and chronic otitis media. Clin Otolaryngol 20:326–328PubMedGoogle Scholar
  59. 59.
    Yoshimura M, Namura S, Akamatsu H, Horio T (1996) Antimicrobial effects of phototherapy and photochemotherapy in vivo and in vitro. Br J Dermatol 135:528–532PubMedGoogle Scholar

Copyright information

© Springer Medizin Verlag 2005

Authors and Affiliations

  1. 1.Klinik und Poliklinik für DermatologieKlinikum der Universität Regensburg
  2. 2.Institut für medizinische Mikrobiologie und HygieneUniversität Regensburg
  3. 3.Dr. August Wolff GmbH & Co. ArzneimittelBielefeld
  4. 4.Klinik und Poliklinik für DermatologieUniversität RegensburgRegensburg

Personalised recommendations