Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Künstliche Intelligenz in der Gefäßchirurgie und Gefäßmedizin

Artificial intelligence in vascular surgery and vascular medicine


Neue digitale Technologien werden auch in der Gefäßchirurgie an Bedeutung gewinnen, mit einem breiten Feld an Anwendungsgebieten. Die Simulation endovaskulärer Eingriffe kann zur Verbesserung prozedurenspezifischer Parameter führen und die Fluoroskopie- und Prozedurenzeit verkürzen. Die Anwendung der intraoperativen Navigation und Robotik ermöglicht ebenso eine Reduktion der Strahlendosis. Durch maschinelles Lernen könnte eine Risikostratifizierung und Individualisierung der Therapie stattfinden. Health-Apps ermöglichen, die Nachsorge der Patienten zu verbessern.


New digital technologies will also gain in importance in vascular surgery. There is a wide field of potential applications. Simulation-based training of endovascular procedures can lead to improvement in procedure-specific parameters and reduce fluoroscopy and procedural times. The use of intraoperative image-guided navigation and robotics also enables a reduction of the radiation dose. Artificial intelligence can be used for risk stratification and individualization of treatment approaches. Health apps can be used to improve the follow-up care of patients.

This is a preview of subscription content, log in to check access.

Abb. 1
Abb. 2
Abb. 3


  1. 1.

    Zertifiziert durch die Deutsche Gesellschaft für Gefäßchirurgie und Gefäßmedizin.


  1. 1.

    Bhavnani SP et al (2017) Roadmap for innovation-ACC health policy statement on healthcare transformation in the era of digital health, big data, and precision health: a report of the American college of cardiology task force on health policy statements and systems of care. J Am Coll Cardiol 70(21):2696–2718

  2. 2.

    See KW et al (2016) Evidence for Endovascular simulation training: a systematic review. Eur J Vasc Endovasc Surg 51(3):441–451

  3. 3.

    Hseino H et al (2012) Skills transfer after proficiency-based simulation training in superficial femoral artery angioplasty. Simul Healthc 7(5):274–281

  4. 4.

    Maertens H et al (2017) A proficiency based stepwise endovascular curricular training (PROSPECT) program enhances operative performance in real life: a randomised controlled trial. Eur J Vasc Endovasc Surg 54(3):387–396

  5. 5.

    Saratzis A et al (2017) Role of simulation in endovascular aneurysm repair (EVAR) training: a preliminary study. Eur J Vasc Endovasc Surg 53(2):193–198

  6. 6.

    Desender L et al (2013) Patient-specific rehearsal prior to EVAR: a pilot study. Eur J Vasc Endovasc Surg 45(6):639–647

  7. 7.

    Kim AH et al (2016) Endovascular aneurysm repair simulation can lead to decreased fluoroscopy time and accurately delineate the proximal seal zone. J Vasc Surg 64(1):251–258

  8. 8.

    Rudarakanchana N et al (2014) Endovascular repair of ruptured abdominal aortic aneurysm: technical and team training in an immersive virtual reality environment. Cardiovasc Intervent Radiol 37(4):920–927

  9. 9.

    Torres IO, De Luccia N (2017) A simulator for training in endovascular aneurysm repair: the use of three dimensional printers. Eur J Vasc Endovasc Surg 54(2):247–253

  10. 10.

    Maertens H et al (2018) Endovascular training using a simulation based curriculum is less expensive than training in the hybrid angiosuite. Eur J Vasc Endovasc Surg 56(4):583–590

  11. 11.

    Duran C et al (2015) The model for fundamentals of endovascular surgery (FEVS) successfully defines the competent endovascular surgeon. J Vasc Surg 62(6):1660–1666

  12. 12.

    Markovic J et al (2012) Impact of endovascular simulator training on vascular surgery as a career choice in medical students. J Vasc Surg 55(5):1515–1521

  13. 13.

    Maurel B et al (2012) Evaluation of radiation during EVAR performed on a mobile C‑arm. Eur J Vasc Endovasc Surg 43(1):16–21

  14. 14.

    Sailer AM et al (2014) CTA with fluoroscopy image fusion guidance in endovascular complex aortic aneurysm repair. Eur J Vasc Endovasc Surg 47(4):349–356

  15. 15.

    Maurel B et al (2018) A prospective observational trial of fusion imaging in infrarenal aneurysms. J Vasc Surg 68(6):1706–1713

  16. 16.

    de Ruiter QM, Moll FL, van Herwaarden JA (2015) Current state in tracking and robotic navigation systems for application in endovascular aortic aneurysm repair. J Vasc Surg 61(1):256–264

  17. 17.

    Mung JC et al (2013) Stereotactic endovascular aortic navigation with a novel ultrasonic-based three-dimensional localization system. J Vasc Surg 57(6):1637–1644

  18. 18.

    Riga C et al (2009) Initial clinical application of a robotically steerable catheter system in endovascular aneurysm repair. J Endovasc Ther 16(2):149–153

  19. 19.

    Cochennec F et al (2015) Feasibility and safety of renal and visceral target vessel cannulation using robotically steerable catheters during complex endovascular aortic procedures. J Endovasc Ther 22(2):187–193

  20. 20.

    Baxt WG (1995) Application of artificial neural networks to clinical medicine. Lancet 346(8983):1135–1138

  21. 21.

    Wise ES, Hocking KM, Brophy CM (2015) Prediction of in-hospital mortality after ruptured abdominal aortic aneurysm repair using an artificial neural network. J Vasc Surg 62(1):8–15

  22. 22.

    Biehler J et al (2017) Probabilistic noninvasive prediction of wall properties of abdominal aortic aneurysms using Bayesian regression. Biomech Model Mechanobiol 16(1):45–61

  23. 23.

    Hemmler A et al (2019) Patient-specific in silico endovascular repair of abdominal aortic aneurysms: application and validation. Biomech Model Mechanobiol 18(4):983–1004

  24. 24.

    Hemmler A et al (2019) In silico study of vessel and stent-graft parameters on the potential success of endovascular aneurysm repair. Int J Numer Method Biomed Eng p:e3237

  25. 25.

    Hemmler A et al (2018) A methodology for in silico endovascular repair of abdominal aortic aneurysms. Biomech Model Mechanobiol 17(4):1139–1164

  26. 26.

    Kordzadeh A, Esfahlani SS (2019) The role of artificial intelligence in the prediction of functional maturation of arteriovenous fistula. Ann Vasc Dis 12(1):44–49

  27. 27.

    Ross EG et al (2016) The use of machine learning for the identification of peripheral artery disease and future mortality risk. J Vasc Surg 64(5):1515–1522.e3

  28. 28.

    Dickten H, Kratsch C, Reiz B (2019) Die künstliche Intelligenz in der Einzelzellgenomik. Gefässchirurgie 24:523.

  29. 29.

    Wongvibulsin S et al (2019) Connected health technology for cardiovascular disease prevention and management. Curr Treat Options Cardiovasc Med 21(6):29

  30. 30.

    Mousa AY et al (2019) Results of telehealth electronic monitoring for post discharge complications and surgical site infections following arterial revascularization with groin incision. Ann Vasc Surg 57:160–169

Download references

Author information

Correspondence to Prof. Dr. C. Reeps FEBVS.

Ethics declarations


S. Wolk, M. Kleemann und C. Reeps geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wolk, S., Kleemann, M. & Reeps, C. Künstliche Intelligenz in der Gefäßchirurgie und Gefäßmedizin. Chirurg (2020).

Download citation


  • Digitale Transformation
  • Navigation in der Gefäßchirurgie
  • Machinelles Lernen
  • Virtual Reality
  • Digital Health


  • Digital transformation
  • Navigation in vascular surgery
  • Machine learning
  • Virtual reality
  • Digital health