Zusammenfassung
Die chirurgische Therapie metabolischer Erkrankungen hat sich in den letzten Jahren als effektive Alternative zur konservativen Therapie etabliert. Die neuen S3-Leitlinien adressieren diese Veränderungen und geben klare Indikationen für die Adipositaschirurgie. Einer der Kernpunkte der neuen Leitlinien stellt die Unterscheidung der Adipositaschirurgie von der metabolischen Chirurgie dar. Bei der Adipositaschirurgie ist der Gewichtsverlust das primäre Therapieziel, während es bei den metabolischen Indikationen die Verbesserung der Komorbidität unabhängig vom BMI ist. Bezüglich der Verfahrensauswahl können die SG und der traditionelle RYGB als sichere und mit harter Evidenz belegte Operationen angewandt werden. Der RYGB hat bessere metabolische Effekte bei jedoch auch höheren Komplikations- und Reinterventionsraten. Neuere Verfahren wie der „one anastomosis gastric bypass“ oder der „single anastomosis duodeno-ileal“ haben möglicherweise leicht stärkere metabolische Effekte, wobei allerdings auch das Risiko für Mangelernährung und Vitaminmängel höher ist.
Schlüsselwörter
Diabetes mellitus Bariatrische Chirurgie Mikrovaskuläre Komplikationen Makrovaskuläre Komplikationen Nichtalkoholische FettlebererkrankungMetabolic surgery
Abstract
In recent years the surgical treatment of metabolic diseases has become established as an effective alternative to conservative treatment. The new S3 guidelines address these changes and give clear indications for obesity surgery. One of the core points of the new guidelines is the differentiation between obesity surgery and metabolic surgery. In obesity surgery the primary aim of treatment is weight loss whereas for metabolic indications the aim is an improvement of comorbidities independent of the body mass index (BMI). With respect to the selection of procedures sleeve gastrectomy (SG) and the traditional Roux-en-Y gastric bypass (RYGB) can be used as safe and evidence-based operative procedures. The RYGB has better metabolic effects but higher complication and reintervention rates. More recent procedures, such as the one anastomosis gastric bypass (OAGB) and single anastomosis duodeno-ileal (SADI) bypass possibly have slightly stronger metabolic effects, however, the risk of malnutrition and vitamin deficiency is higher.
Keywords
Diabetes mellitus Bariatric surgery Microvascular complications Macrovascular complications Nonalcoholic fatty liver diseaseNotes
Einhaltung ethischer Richtlinien
Interessenkonflikt
A. T. Billeter und B. P. Müller-Stich geben an, dass kein Interessenkonflikt besteht.
Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.
Literatur
- 1.Dgav D, Ddg, Dgem, Dge-Bv, Dgpm, Dgpräc, Dkpm, Vdbd, Vdoe (2018) S3-Leitlinie: Chirurgie der Adipositas und metabolischer Erkrankungen. In: AWMFGoogle Scholar
- 2.Dietrich AAJ, Wirth A, Müller-Stich B, Schütz T, Tigges H (2018) Adipositaschirurgie und Therapie metabolischer Erkrankungen. Dtsch Arztebl 115:705–711Google Scholar
- 3.Adams LA, Waters OR, Knuiman MW et al (2009) NAFLD as a risk factor for the development of diabetes and the metabolic syndrome: an eleven-year follow-up study. Am J Gastroenterol 104:861–867CrossRefGoogle Scholar
- 4.Andersson DP, Eriksson Hogling D, Thorell A et al (2014) Changes in Subcutaneous Fat Cell Volume and Insulin Sensitivity After Weight Loss. Diabetes Care 37(7):1831–1836. https://doi.org/10.2337/dc13-2395 CrossRefPubMedGoogle Scholar
- 5.Xu XJ, Apovian C, Hess D et al (2015) Improved Insulin Sensitivity 3 Months After RYGB Surgery Is Associated With Increased Subcutaneous Adipose Tissue AMPK Activity and Decreased Oxidative Stress. Diabetes 64:3155–3159CrossRefGoogle Scholar
- 6.Colquitt JL, Pickett K, Loveman E et al (2014) Surgery for weight loss in adults. Cochrane Database Syst Rev 8:CD3641Google Scholar
- 7.Heffron SP, Parikh A, Volodarskiy A et al (2016) Changes in Lipid Profile of Obese Patients Following Contemporary Bariatric Surgery: A Meta-Analysis. Am J Med 129:952–959CrossRefGoogle Scholar
- 8.Yan Y, Sha Y, Yao G et al (2016) Roux-en-Y Gastric Bypass Versus Medical Treatment for Type 2 Diabetes Mellitus in Obese Patients: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Medicine 95:e3462CrossRefGoogle Scholar
- 9.Kenngott HG, Clemens G, Gondan M et al (2013) DiaSurg 2 trial—surgical vs. medical treatment of insulin-dependent type 2 diabetes mellitus in patients with a body mass index between 26 and 35 kg/m2: study protocol of a randomized controlled multicenter trial—DRKS00004550. Trials 14:183CrossRefGoogle Scholar
- 10.Purnell JQ, Selzer F, Wahed AS et al (2016) Type 2 Diabetes Remission Rates After Laparoscopic Gastric Bypass and Gastric Banding: Results of the Longitudinal Assessment of Bariatric Surgery Study. Diabetes Care 39:1101–1107CrossRefGoogle Scholar
- 11.Caiazzo R, Lassailly G, Leteurtre E et al (2014) Roux-en-Y gastric bypass versus adjustable gastric banding to reduce nonalcoholic fatty liver disease: a 5-year controlled longitudinal study. Ann Surg 260:893–898 (discussion 898–899)CrossRefGoogle Scholar
- 12.Batterham RL, Cummings DE (2016) Mechanisms of Diabetes Improvement Following Bariatric/Metabolic Surgery. Diabetes Care 39:893–901CrossRefGoogle Scholar
- 13.Rubino F, Nathan DM, Eckel RH et al (2016) Metabolic Surgery in the Treatment Algorithm for Type 2 Diabetes: A Joint Statement by International Diabetes Organizations. Diabetes Care 39:861–877CrossRefGoogle Scholar
- 14.Mingrone G, Panunzi S, De Gaetano A et al (2015) Bariatric-metabolic surgery versus conventional medical treatment in obese patients with type 2 diabetes: 5 year follow-up of an open-label, single-centre, randomised controlled trial. Lancet 386:964–973CrossRefGoogle Scholar
- 15.Robert MEP, Pelascini E, Caiazzo R, Sterkers A, Khamphommala L, Poghosyan T, Torcivia A, Chevallier JM, Malherbe V, Chouillard E, Reche F, Maucort-Boulch D, Bin S, Pattou F, Disse E (2018) Efficiency and safety of one anastomosis gastric bypass versus Roux-en-Y gastric bypass: Preliminary data of the YOMEGA randomized controlled trial. Obesity Week, NashvilleGoogle Scholar
- 16.Peterli R, Wolnerhanssen BK, Peters T et al (2018) Effect of Laparoscopic Sleeve Gastrectomy vs Laparoscopic Roux-en-Y Gastric Bypass on Weight Loss in Patients With Morbid Obesity: The SM-BOSS Randomized Clinical Trial. JAMA 319:255–265CrossRefGoogle Scholar
- 17.Salminen P, Helmio M, Ovaska J et al (2018) Effect of Laparoscopic Sleeve Gastrectomy vs Laparoscopic Roux-en-Y Gastric Bypass on Weight Loss at 5 Years Among Patients With Morbid Obesity: The SLEEVEPASS Randomized Clinical Trial. JAMA 319:241–254CrossRefGoogle Scholar
- 18.Kalinowski P, Paluszkiewicz R, Wroblewski T et al (2017) Ghrelin, leptin, and glycemic control after sleeve gastrectomy versus Roux-en-Y gastric bypass-results of a randomized clinical trial. Surg Obes Relat Dis 13:181–188CrossRefGoogle Scholar
- 19.Peterli R, Wolnerhanssen B, Peters T et al (2009) Improvement in glucose metabolism after bariatric surgery: comparison of laparoscopic Roux-en-Y gastric bypass and laparoscopic sleeve gastrectomy: a prospective randomized trial. Ann Surg 250:234–241CrossRefGoogle Scholar
- 20.Aminian A, Brethauer SA, Andalib A et al (2017) Individualized Metabolic Surgery Score: Procedure Selection Based on Diabetes Severity. Ann Surg 266:650–657CrossRefGoogle Scholar
- 21.Billeter AT, Senft J, Gotthardt D et al (2016) Combined Non-alcoholic Fatty Liver Disease and Type 2 Diabetes Mellitus: Sleeve Gastrectomy or Gastric Bypass?—a Controlled Matched Pair Study of 34 Patients. Obes Surg 26:1867–1874CrossRefGoogle Scholar
- 22.Kalinowski P, Paluszkiewicz R, Ziarkiewicz-Wroblewska B et al (2017) Liver Function in Patients With Nonalcoholic Fatty Liver Disease Randomized to Roux-en-Y Gastric Bypass Versus Sleeve Gastrectomy: A Secondary Analysis of a Randomized Clinical Trial. Ann Surg 266:738–745CrossRefGoogle Scholar
- 23.Federation ID (2018) IDF Diabetes Atlas. International Diabetes Federation, 8. Aufl. Federation IDGoogle Scholar
- 24.(Äzq) ÄZFQIDM (2013) Nationale VersorgungsLeitlinie Typ-2-Diabetes. In:Google Scholar
- 25.Muller-Stich BP, Senft JD, Warschkow R et al (2014) Surgical Versus Medical Treatment of Type 2 Diabetes Mellitus in Nonseverely Obese Patients: A Systematic Review and Meta-Analysis. Ann Surg 261(3):421–429. https://doi.org/10.1097/SLA.0000000000001014 CrossRefGoogle Scholar
- 26.Ikramuddin S, Korner J, Lee WJ et al (2016) Durability of Addition of Roux-en-Y Gastric Bypass to Lifestyle Intervention and Medical Management in Achieving Primary Treatment Goals for Uncontrolled Type 2 Diabetes in Mild to Moderate Obesity: A Randomized Control Trial. Diabetes Care 39:1510–1518CrossRefGoogle Scholar
- 27.Schauer PR, Bhatt DL, Kirwan JP et al (2017) Bariatric Surgery versus Intensive Medical Therapy for Diabetes—5-Year Outcomes. N Engl J Med 376:641–651CrossRefGoogle Scholar
- 28.Adams TD, Davidson LE, Litwin SE et al (2017) Weight and Metabolic Outcomes 12 Years after Gastric Bypass. N Engl J Med 377:1143–1155CrossRefGoogle Scholar
- 29.Brethauer SA, Aminian A, Romero-Talamas H et al (2013) Can diabetes be surgically cured? Long-term metabolic effects of bariatric surgery in obese patients with type 2 diabetes mellitus. Ann Surg 258:628–636 (discussion 636–627)PubMedPubMedCentralGoogle Scholar
- 30.Hartmann J, Jacobs S, Eberhard S et al (2016) Analysing predictors for future high-cost patients using German SHI data to identify starting points for prevention. Eur J Public Health 26(4):549–555. https://doi.org/10.1093/eurpub/ckv248 CrossRefPubMedGoogle Scholar
- 31.Look ARG (2014) Effect of a long-term behavioural weight loss intervention on nephropathy in overweight or obese adults with type 2 diabetes: a secondary analysis of the Look AHEAD randomised clinical trial. Lancet Diabetes Endocrinol 2:801–809CrossRefGoogle Scholar
- 32.Ruospo M, Saglimbene VM, Palmer SC et al (2017) Glucose targets for preventing diabetic kidney disease and its progression. Cochrane Database Syst Rev 6:CD10137PubMedGoogle Scholar
- 33.Scirica BM, Bhatt DL, Braunwald E et al (2013) Saxagliptin and cardiovascular outcomes in patients with type 2 diabetes mellitus. N Engl J Med 369:1317–1326CrossRefGoogle Scholar
- 34.Marso SP, Daniels GH, Brown-Frandsen K et al (2016) Liraglutide and Cardiovascular Outcomes in Type 2 Diabetes. N Engl J Med 375:311–322CrossRefGoogle Scholar
- 35.Zinman B, Wanner C, Lachin JM et al (2015) Empagliflozin, Cardiovascular Outcomes, and Mortality in Type 2 Diabetes. N Engl J Med 373:2117–2128CrossRefGoogle Scholar
- 36.Billeter AT, Scheurlen KM, Probst P et al (2018) Meta-analysis of metabolic surgery versus medical treatment for microvascular complications in patients with type 2 diabetes mellitus. Br J Surg 105:168–181CrossRefGoogle Scholar
- 37.Dhatariya K, Bain SC, Buse JB et al (2018) The Impact of Liraglutide on Diabetes-Related Foot Ulceration and Associated Complications in Patients With Type 2 Diabetes at High Risk for Cardiovascular Events: Results From the LEADER Trial. Diabetes Care 41(10):2229–2235. https://doi.org/10.2337/dc18-1094 CrossRefPubMedGoogle Scholar
- 38.Dicembrini I, Nreu B, Scatena A et al (2017) Microvascular effects of glucagon-like peptide-1 receptor agonists in type 2 diabetes: a meta-analysis of randomized controlled trials. Acta Diabetol 54:933–941CrossRefGoogle Scholar
- 39.Li D, Yang JY, Wang T et al (2018) Risks of diabetic foot syndrome and amputation associated with sodium glucose co-transporter 2 inhibitors: A Meta-analysis of Randomized Controlled Trials. Diabetes Metab 44(5):410–414. https://doi.org/10.1016/j.diabet.2018.02.001 CrossRefPubMedGoogle Scholar
- 40.Sjostrom L, Peltonen M, Jacobson P et al (2014) Association of bariatric surgery with long-term remission of type 2 diabetes and with microvascular and macrovascular complications. JAMA 311:2297–2304CrossRefGoogle Scholar
- 41.Muller-Stich BP, Billeter AT, Fleming T et al (2014) Nitrosative stress but not glycemic parameters correlate with improved neuropathy in nonseverely obese diabetic patients after Roux-Y gastric bypass. Surgery for obesity and related diseases. Off J Am Soc Bariatr Surg 11(4):847–854. https://doi.org/10.1016/j.soard.2014.12.007 CrossRefGoogle Scholar
- 42.Muller-Stich BP, Fischer L, Kenngott HG et al (2013) Gastric bypass leads to improvement of diabetic neuropathy independent of glucose normalization—results of a prospective cohort study (DiaSurg 1 study). Ann Surg 258:760–765 (discussion 765–766)CrossRefGoogle Scholar
- 43.Billeter AT, Kopf S, Zeier M et al (2016) Renal Function in Type 2 Diabetes Following Gastric Bypass. Dtsch Arztebl Int 113:827–833PubMedGoogle Scholar
- 44.Sharma A, Green JB, Dunning A et al (2017) Causes of Death in a Contemporary Cohort of Patients With Type 2 Diabetes and Atherosclerotic Cardiovascular Disease: Insights From the TECOS Trial. Diabetes Care 40:1763–1770CrossRefGoogle Scholar
- 45.Rockl S, Brinks R, Baumert J et al (2017) All-cause mortality in adults with and without type 2 diabetes: findings from the national health monitoring in Germany. Bmj Open Diabetes Res Care 5:e451CrossRefGoogle Scholar
- 46.Look ARG, Wing RR, Bolin P et al (2013) Cardiovascular effects of intensive lifestyle intervention in type 2 diabetes. N Engl J Med 369:145–154CrossRefGoogle Scholar
- 47.Billeter At ES, Scheurlen KM, Kopf S, Probst P, Müller-Stich BP (2018) Metabolic surgery reduces mortality and macrovascular complications in patients with type 2 diabetes mellitus compared to medical therapy: a meta-analysis. ObesityWeek 2018, Nashville, TNGoogle Scholar
- 48.Arterburn DE, Olsen MK, Smith VA et al (2015) Association between bariatric surgery and long-term survival. JAMA 313:62–70CrossRefGoogle Scholar
- 49.Sjostrom L, Narbro K, Sjostrom CD et al (2007) Effects of bariatric surgery on mortality in Swedish obese subjects. N Engl J Med 357:741–752CrossRefGoogle Scholar
- 50.Cholankeril G, Patel R, Khurana S et al (2017) Hepatocellular carcinoma in non-alcoholic steatohepatitis: Current knowledge and implications for management. World J Hepatol 9:533–543CrossRefGoogle Scholar
- 51.Kabbany MN, Conjeevaram Selvakumar PK, Watt K et al (2017) Prevalence of Nonalcoholic Steatohepatitis-Associated Cirrhosis in the United States: An Analysis of National Health and Nutrition Examination Survey Data. Am J Gastroenterol 112:581–587CrossRefGoogle Scholar
- 52.Serfaty L, Lemoine M (2008) Definition and natural history of metabolic steatosis: clinical aspects of NAFLD, NASH and cirrhosis. Diabetes Metab 34:634–637CrossRefGoogle Scholar
- 53.Grandison GA, Angulo P (2012) Can NASH be diagnosed, graded, and staged noninvasively? Clin Liver Dis 16:567–585CrossRefGoogle Scholar
- 54.Degasperi E, Colombo M (2016) Distinctive features of hepatocellular carcinoma in non-alcoholic fatty liver disease. The lancet. Gastroenterol Hepatol 1:156–164Google Scholar
- 55.Cusi K (2016) Treatment of patients with type 2 diabetes and non-alcoholic fatty liver disease: current approaches and future directions. Diabetologia 59:1112–1120CrossRefGoogle Scholar
- 56.Ratziu V, Goodman Z, Sanyal A (2015) Current efforts and trends in the treatment of NASH. J Hepatol 62:S65–75CrossRefGoogle Scholar
- 57.Armstrong MJ, Gaunt P, Aithal GP et al (2016) Liraglutide safety and efficacy in patients with non-alcoholic steatohepatitis (LEAN): a multicentre, double-blind, randomised, placebo-controlled phase 2 study. Lancet 387:679–690CrossRefGoogle Scholar
- 58.Lassailly G, Caiazzo R, Buob D et al (2015) Bariatric Surgery Reduces Features of Nonalcoholic Steatohepatitis in Morbidly Obese Patients. Baillieres Clin Gastroenterol 149:379–388Google Scholar
- 59.Müller BP, Billeter AT, Straub BK, Israel B, Schulte T, Schirmacher PP, Büchler MW, Nawroth PP (2016) Gastric Bypass increases FGF-19 and FGF-21 and improves Steatohepatitis in metabolically sick patients with Diabetes mellitus Type 2 and low-BMI <35kg/m2. IFSO Worldcongress 2016 Rio de JaneiroGoogle Scholar
- 60.Yang B, Yang HP, Ward KK et al (2016) Bariatric Surgery and Liver Cancer in a Consortium of Academic Medical Centers. Obes Surg 26:696–700CrossRefGoogle Scholar
- 61.Klebanoff MJ, Corey KE, Chhatwal J et al (2017) Bariatric surgery for nonalcoholic steatohepatitis: A clinical and cost-effectiveness analysis. Hepatology 65:1156–1164CrossRefGoogle Scholar