Advertisement

Der Chirurg

, Volume 89, Issue 10, pp 769–776 | Cite as

Navigierte Leberchirurgie

Aktueller Stand und Bedeutung in der Zukunft
  • K. J. Oldhafer
  • M. Peterhans
  • A. Kantas
  • A. Schenk
  • G. Makridis
  • S. Pelzl
  • K. C. Wagner
  • S. Weber
  • G. A. Stavrou
  • M. Donati
Leitthema

Zusammenfassung

Die präoperative computergestützte Resektionsplanung ist die Grundlage für jede Navigation. Dank moderner Algorithmen sind die Voraussetzungen geschaffen, eine virtuelle Resektionsplanung und Risikoanalyse vorzunehmen. So sind individuelle Segmentresektionen in jeder denkbaren Kombination exakt planbar. Problematisch ist nach wie vor, Planungsinformationen und Resektionsvorschläge in den Operationssaal zu transferieren. Die sog. stereotaktische Lebernavigation unterstützt die genaue, intraoperative Umsetzung der geplanten Resektionsstrategie und stellt dem Chirurgen während der Resektion dreidimensionale Information zu Resektionsgrenzen und kritischen Strukturen dar. Dies wird durch ein chirurgisches Navigationssystem ermöglicht, das die Position von chirurgischen Instrumenten misst und diese dann zusammen mit den präoperativen chirurgischen Planungsdaten darstellt. Obwohl chirurgische Navigationssysteme in der Neuro- und Wirbelsäulenchirurgie seit Jahren nicht mehr wegzudenken sind, konnten diese Verfahren bis jetzt in der Leberchirurgie nicht als Standard etabliert werden. Dies liegt v. a. an der technischen Herausforderung der Navigation an einem beweglichen Organ. Da sich die Leber während der Operation durch Atmung und chirurgische Manipulation laufend bewegt und verformt, muss das chirurgische Navigationssystem diese Deformation messen können, um die präoperativen Navigationsdaten laufend an die aktuelle Situation anzupassen. Trotz dieser Fortschritte bedarf es noch weiterer Entwicklungen, bis die navigierte Leberresektion in die klinische Routine kommt. Es lässt sich jetzt jedoch schon absehen, dass die laparoskopische Leberchirurgie und die Roboterchirurgie am meisten von der Navigationstechnologie profitieren werden.

Schlüsselwörter

Leberresektion Planung Erweiterte Realität 3-D-Technologie Risikoanalyse 

Navigated liver surgery

Current state and importance in the future

Abstract

The preoperative computer-assisted resection planning is the basis for every navigation. Thanks to modern algorithms, the prerequisites have been created to carry out a virtual resection planning and a risk analysis. Thus, individual segment resections can be precisely planned in any conceivable combination. The transfer of planning information and resection suggestions to the operating theater is still problematic. The so-called stereotactic liver navigation supports the exact intraoperative implementation of the planned resection strategy and provides the surgeon with real-time three-dimensional information on resection margins and critical structures during the resection. This is made possible by a surgical navigation system that measures the position of surgical instruments and then presents them together with the preoperative surgical planning data. Although surgical navigation systems have been indispensable in neurosurgery and spinal surgery for many years, these procedures have not yet become established as standard in liver surgery. This is mainly due to the technical challenge of navigating a moving organ. As the liver is constantly moving and deforming during surgery due to respiration and surgical manipulation, the surgical navigation system must be able to measure these alterations in order to adapt the preoperative navigation data to the current situation. Despite these advances, further developments are required until navigated liver resection enters clinical routine; however, it is already clear that laparoscopic liver surgery and robotic surgery will benefit most from navigation technology.

Keywords

Liver Resection Planning Augmented reality 3D technology Risk analysis 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

K.J. Oldhafer, M. Peterhans, A. Kantas, A. Schenk, G. Makridis, S. Pelzl, K.C. Wagner, S. Weber, G.A. Stavrou und M. Donati geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Literatur

  1. 1.
    Asakuma M, Fujimoto Y, Bourquain H et al (2007) Graft selection algorithm based on congestion volume for adult living donor liver transplantation. Am J Transplant 7:1788–1796CrossRefGoogle Scholar
  2. 2.
    Banz VM, Muller PC, Tinguely P et al (2016) Intraoperative image-guided navigation system: development and applicability in 65 patients undergoing liver surgery. Langenbecks Arch Surg 401:495–502CrossRefGoogle Scholar
  3. 3.
    Bao P, Warmath J, Galloway R Jr. et al (2005) Ultrasound-to-computer-tomography registration for image-guided laparoscopic liver surgery. Surg Endosc 19:424–429CrossRefGoogle Scholar
  4. 4.
    Beller S, Hünerbein M, Eulenstein S et al (2007) Feasibility of navigated resection of liver tumors using multiplanar visualization of Intraoperative 3‑dimensional ultrasound data. Ann Surg 246:288–294CrossRefGoogle Scholar
  5. 5.
    Chlebus G, Meine H, Moltz HJ et al (2017) Neureal network-based automatic liver tumor segmentation with random forest-based candidate filtering. CoRR. http://arxiv.org/abs/1706.00842. Zugegriffen: 10. Mai 2018Google Scholar
  6. 6.
    Clements LW, Collins JA, Weis JA et al (2016) Evaluation of model-based deformation correction in image-guided liver surgery via tracked intraoperative ultrasound. J Med Imaging (Bellingham) 3:15003CrossRefGoogle Scholar
  7. 7.
    Conrad C, Fusaglia M, Peterhans M et al (2016) Augmented reality navigation surgery facilitates laparoscopic rescue of failed portal vein embolization. J Am Coll Surg 223:e31–e34CrossRefGoogle Scholar
  8. 8.
    Engstrand J, Nilsson H, Jansson A et al (2014) A multiple microwave ablation strategy in patients with initially unresectable colorectal cancer liver metastases—a safety and feasibility study of a new concept. Eur J Surg Oncol 40:1488–1493CrossRefGoogle Scholar
  9. 9.
    Fasel JH, Schenk A (2013) Concepts for liver segment classification: neither old ones nor new ones, but a comprehensive one. J Clin Imaging Sci 3:48CrossRefGoogle Scholar
  10. 10.
    Haouchine N, Dequidt J, Peterlik I, Kerrien E, Berger M, Cotin S (2013) Image-guided simulation of heterogeneous tissue deformation for augmented reality during hepatic surgery. In: IEEE International Symposium on Mixed and Augmented Reality (ISMAR), Adelaide, SA, 2013, pp. 199–208.  https://doi.org/10.1109/ISMAR.2013.6671780 Google Scholar
  11. 11.
    Herline AJ, Herring JL, Stefansic JD et al (2000) Surface registration for use in interactive, image-guided liver surgery. Comput Aided Surg 5:11–17PubMedGoogle Scholar
  12. 12.
    Herline AJ, Stefansic JD, Debelak JP et al (1999) Image-guided surgery: preliminary feasibility studies of frameless stereotactic liver surgery. Arch Surg 134:644–650CrossRefGoogle Scholar
  13. 13.
    Kingham TP, Jayaraman S, Clements LW et al (2013) Evolution of image-guided liver surgery: transition from open to laparoscopic procedures. J Gastrointest Surg 17:1274–1282CrossRefGoogle Scholar
  14. 14.
    Kingham TP, Scherer MA, Neese BW et al (2012) Image-guided liver surgery: intraoperative projection of computed tomography images utilizing tracked ultrasound. HPB (Oxford) 14:594–603CrossRefGoogle Scholar
  15. 15.
    Oldhafer KJ, Stavrou GA, Prause G et al (2009) How to operate a liver tumor you cannot see. Langenbecks Arch Surg 394:489–494CrossRefGoogle Scholar
  16. 16.
    Panaro F, Habibeh H, Pessaux P et al (2015) Navigation liver surgery for complex hydatid cyst with biliary tree communication. Int J Surg Case Rep 12:112–116CrossRefGoogle Scholar
  17. 17.
    Peterhans M, Vom Berg A, Dagon B et al (2011) A navigation system for open liver surgery: design, workflow and first clinical applications. Int J Med Robot 7:7–16CrossRefGoogle Scholar
  18. 18.
    Peterlik I, Courtecuisse H, Rohling R et al (2018) Fast elastic registration of soft tissues under large deformations. Med Image Anal 45:24–40CrossRefGoogle Scholar
  19. 19.
    Radtke A, Sgourakis G, Sotiropoulos GC et al (2010) Donor/recipient algorithm for management of the middle hepatic vein in right graft live donor liver transplantation. Am J Surg 199:708–715CrossRefGoogle Scholar
  20. 20.
    Reichard D, Bodenstedt S, Suwelack S et al (2015) Intraoperative on-the-fly organ-mosaicking for laparoscopic surgery. J Med Imaging (Bellingham) 2:45001CrossRefGoogle Scholar
  21. 21.
    Robu MR, Edwards P, Ramalhinho J et al (2017) Intelligent viewpoint selection for efficient CT to video registration in laparoscopic liver surgery. Int J Comput Assist Radiol Surg 12:1079–1088CrossRefGoogle Scholar
  22. 22.
    Selle D, Preim B, Schenk A et al (2002) Analysis of vasculature for liver surgical planning. IEEE Trans Med Imaging 21:1344–1357CrossRefGoogle Scholar
  23. 23.
    Stavrou GA, Donati M, Ringe KI et al (2012) Liver remnant hypertrophy induction—how often do we really use it in the time of computer assisted surgery? Adv Med Sci 57:251–258CrossRefGoogle Scholar
  24. 24.
    Stillstrom D, Nilsson H, Jesse M et al (2017) A new technique for minimally invasive irreversible electroporation of tumors in the head and body of the pancreas. Surg Endosc 31:1982–1985CrossRefGoogle Scholar
  25. 25.
    Suwelack S, Rohl S, Bodenstedt S et al (2014) Physics-based shape matching for intraoperative image guidance. Med Phys 41:111901CrossRefGoogle Scholar
  26. 26.
    Tinguely P, Fusaglia M, Freedman J et al (2017) Laparoscopic image-based navigation for microwave ablation of liver tumors—a multi-center study. Surg Endosc 31:4315–4324CrossRefGoogle Scholar
  27. 27.
    Tinguely P, Ribes D, Worni M, Peterhans M, Weber S, Candinas D (2014) Preliminary experience withmultiple microwave ablation facilitated by computer-assisted liver navigation in advanced neuroendocrine liver metastasis. Abstracts of the 11th World Congress of the International Hepato-Pancreato-Biliary Association, 22–27 March 2014, Seoul Korea, HPB , Volume 16, 406–549, Elsevier, New YorkGoogle Scholar
  28. 28.
    Yabushita Y, Matsuyama R, Mori R et al (2017) iPad guided right hemihepatectomy with a new application designed specifically for navigation surgery. In: 6th Biennial Congress of the Asian-Pacific Hepato-Pancreato-Biliary Association Yokohama. J Hepatobiliary Pancreat Sci 24(Suppl 1):A107Google Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2018

Authors and Affiliations

  • K. J. Oldhafer
    • 1
    • 2
  • M. Peterhans
    • 3
  • A. Kantas
    • 1
    • 2
  • A. Schenk
    • 4
  • G. Makridis
    • 1
    • 2
  • S. Pelzl
    • 5
  • K. C. Wagner
    • 1
    • 2
  • S. Weber
    • 6
  • G. A. Stavrou
    • 7
  • M. Donati
    • 2
    • 8
  1. 1.Klinik für Allgemein- und ViszeralchirurgieAsklepios Klinik BarmbekHamburgDeutschland
  2. 2.Semmelweis Universität BudapestCampus HamburgHamburgDeutschland
  3. 3.CAScination AGBernSchweiz
  4. 4.Fraunhofer-Institut für Bildgestützte Medizin MEVISBremenDeutschland
  5. 5.apoQlarHamburgDeutschland
  6. 6.University of BernARTORG Center for Biomedical Engineering ResearchBernSchweiz
  7. 7.Klinik für Allgemein‑, Viszeralchirurgie, Thorax- und KinderchirurgieKlinikum SaarbrückenSaarbrückenDeutschland
  8. 8.Department of Surgery and Medical Surgical SpecialtiesUniversity of CataniaCataniaItalien

Personalised recommendations