Der Chirurg

, Volume 89, Issue 4, pp 257–265 | Cite as

Pankreasfrühkarzinom

  • C. Kahlert
  • M. Distler
  • D. Aust
  • L. Gieldon
  • J. Weitz
  • T. Welsch
Leitthema
  • 370 Downloads

Zusammenfassung

Hintergrund

Das Pankreaskarzinom steht bei den tumorbedingten Todesursachen aktuell an vierter Stelle und wird bis 2020 voraussichtlich die zweithäufigste Todesursache in den USA sein.

Fragestellung

Welche Diagnosemöglichkeiten und Therapiestrategien zur Behandlung eines Pankreasfrühkarzinoms und seiner präkanzerösen Vorstufen können angewandt werden?

Ergebnisse

Eine flächendeckende Vorsorgeuntersuchung ist zur Früherkennung beim Pankreaskarzinom in der Normalbevölkerung nicht sinnvoll. Beim Verdacht auf auf das Vorliegen eines familiären Pankreaskarzinoms oder bei nachgewiesenen sporadischen Keimbahnmutationen mit erhöhtem Erkrankungsrisiko sollte hingegen eine Vorsorgeuntersuchung spätestens ab dem 45. Lebensjahr begonnen werden. Ebenfalls sollte bei Patienten mit einer präkanzerösen Pankreasneoplasie (insbesondere muzinöse Pankreastumoren) eine elektive Pankreas(teil)resektion durchgeführt werden, da hier ein relevantes Risiko für das Vorliegen eines Pankreasfrühkarzinoms besteht. Komplementär zur bildgebenden Diagnostik können möglicherweise zukünftig nichtinvasive, blutbasierte Biomarker wie zirkulierende Tumorzellen, Exosome oder zellfreie Tumor-DNA eingesetzt werden, um ein Pankreaskarzinom bereits im Frühstadium erkennen zu können.

Schlussfolgerung

Die rechtzeitige Diagnose und Behandlung eines Pankreasfrühkarzinoms kann die Prognose der betroffenen Patienten deutlich verbessern.

Schlüsselwörter

Präkanzeröse Vorstadien Familiäres Pankreaskarzinom Blutbasierte Biomarker Keimbahnmutation Screening 

Early stage pancreatic cancer

Abstract

Background

Pancreatic ductal adenocarcinoma (PDAC) represents the fourth most common cause of cancer mortality and it is expected to become the second most common cause of cancer mortality by 2020 in the USA.

Objective

Which strategies for the detection and treatment of an early stage pancreatic adenocarcinoma and its precursor lesions are to be applied?

Results

Currently, there is no effective general screening program for pancreatic cancer due to the low incidence and the lack of an accurate and inexpensive diagnostic method; however, in patients with a positive history of hereditary pancreatic cancer or in patients with a known sporadic germline mutation that is associated with an increased risk of pancreatic cancer, frequent screening is highly recommended to detect and to treat early stage PDAC. Moreover, patients with a precursor lesion for pancreatic cancer (namely a mucinous pancreatic neoplasm) should undergo an oncological pancreatic resection to prevent the development of late stage pancreatic cancer. In future, additional biomarkers from a liquid biopsy, such as circulating tumor cells, exosomes or circulating tumor DNA may improve the early detection of pancreatic cancer.

Conclusion

The early detection and treatment of pancreatic cancer and its precursor lesions can help to improve the dismal prognosis of this aggressive tumor type.

Keywords

Precursor lesions Hereditary pancreatic cancer Liquid biopsy Germline mutation Screening 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

C. Kahlert, M. Distler, D. Aust, L. Gieldon, J. Weitz und T. Welsch geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Literatur

  1. 1.
    Agarwal B, Abu-Hamda E, Molke KL et al (2004) Endoscopic ultrasound-guided fine needle aspiration and multidetector spiral CT in the diagnosis of pancreatic cancer. Am J Gastroenterol 99:844–850CrossRefPubMedGoogle Scholar
  2. 2.
    Basturk O, Hong SM, Wood LD et al (2015) A revised classification system and recommendations from the Baltimore Consensus Meeting for Neoplastic Precursor Lesions in the Pancreas. Am J Surg Pathol 39:1730–1741CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Berger AW, Schwerdel D, Costa IG et al (2016) Detection of hot-spot mutations in circulating cell-free DNA from patients with Intraductal papillary mucinous neoplasms of the pancreas. Gastroenterology 151:267–270CrossRefPubMedGoogle Scholar
  4. 4.
    Berger AW, Seufferlein T, Kleger A (2017) Cystic pancreatic tumors: diagnostics and new biomarkers. Chirurg 88(11):905–912.  https://doi.org/10.1007/s00104-017-0493-1 CrossRefPubMedGoogle Scholar
  5. 5.
    Bettegowda C, Sausen M, Leary RJ et al (2014) Detection of circulating tumor DNA in early- and late-stage human malignancies. Sci Transl Med 6:224ra224CrossRefGoogle Scholar
  6. 6.
    Canto MI, Harinck F, Hruban RH et al (2013) International Cancer of the Pancreas Screening (CAPS) Consortium summit on the management of patients with increased risk for familial pancreatic cancer. Gut 62:339–347CrossRefPubMedGoogle Scholar
  7. 7.
    Carrera S, Sancho A, Azkona E et al (2017) Hereditary pancreatic cancer: related syndromes and clinical perspective. Hered Cancer Clin Pract 15:9CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Catenacci DV, Chapman CG, Xu P et al (2015) Acquisition of portal venous circulating tumor cells from patients with pancreaticobiliary cancers by endoscopic ultrasound. Gastroenterology 149:1794–1803CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Chari ST (2007) Detecting early pancreatic cancer: problems and prospects. Semin Oncol 34:284–294CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Crippa S, Salvia R, Warshaw AL et al (2008) Mucinous cystic neoplasm of the pancreas is not an aggressive entity: lessons from 163 resected patients. Ann Surg 247:571–579CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Diaz LA Jr., Bardelli A (2014) Liquid biopsies: genotyping circulating tumor DNA. J Clin Oncol 32:579–586CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Distler M, Grutzmann R (2012) New aspects of surgery for pancreatic cancer. Principles, results and evidence. Pathologe 33(Suppl 2):258–265CrossRefPubMedGoogle Scholar
  13. 13.
    Distler M, Kersting S, Niedergethmann M et al (2013) Pathohistological subtype predicts survival in patients with intraductal papillary mucinous neoplasm (IPMN) of the pancreas. Ann Surg 258:324–330CrossRefPubMedGoogle Scholar
  14. 14.
    Distler M, Aust D, Weitz J et al (2014) Precursor lesions for sporadic pancreatic cancer: PanIN, IPMN, and MCN. Biomed Res Int 2014:474905CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Dreyer SB, Chang DK, Bailey P et al (2017) Pancreatic cancer genomes: implications for clinical management and therapeutic development. Clin Cancer Res 23:1638–1646CrossRefPubMedGoogle Scholar
  16. 16.
    Egawa S, Toma H, Ohigashi H et al (2012) Japan pancreatic cancer registry; 30th year anniversary: Japan pancreas society. Pancreas 41:985–992CrossRefPubMedGoogle Scholar
  17. 17.
    Farrell JJ, Fernandez-Del Castillo C (2013) Pancreatic cystic neoplasms: management and unanswered questions. Gastroenterology 144:1303–1315CrossRefPubMedGoogle Scholar
  18. 18.
    Fong ZV, Ferrone CR, Lillemoe KD et al (2016) Intraductal papillary mucinous neoplasm of the pancreas: current state of the art and ongoing controversies. Ann Surg 263:908–917CrossRefPubMedGoogle Scholar
  19. 19.
    Goh BK, Tan YM, Thng CH et al (2008) How useful are clinical, biochemical, and cross-sectional imaging features in predicting potentially malignant or malignant cystic lesions of the pancreas? Results from a single institution experience with 220 surgically treated patients. J Am Coll Surg 206:17–27CrossRefPubMedGoogle Scholar
  20. 20.
    Grutzmann R, Post S, Saeger HD et al (2011) Intraductal papillary mucinous neoplasia (IPMN) of the pancreas: its diagnosis, treatment, and prognosis. Dtsch Arztebl Int 108:788–794PubMedPubMedCentralGoogle Scholar
  21. 21.
    Hebert-Magee S, Bae S, Varadarajulu S et al (2013) The presence of a cytopathologist increases the diagnostic accuracy of endoscopic ultrasound-guided fine needle aspiration cytology for pancreatic adenocarcinoma: a meta-analysis. Cytopathology 24:159–171CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Hidalgo M (2010) Pancreatic cancer. N Engl J Med 362:1605–1617CrossRefPubMedGoogle Scholar
  23. 23.
    Hu C, Hart SN, Bamlet WR et al (2016) Prevalence of pathogenic mutations in cancer predisposition genes among pancreatic cancer patients. Cancer Epidemiol Biomarkers Prev 25:207–211CrossRefPubMedGoogle Scholar
  24. 24.
    Humphris JL, Johns AL, Simpson SH et al (2014) Clinical and pathologic features of familial pancreatic cancer. Cancer 120:3669–3675CrossRefPubMedGoogle Scholar
  25. 25.
    Jang JY, Park T, Lee S et al (2016) Proposed nomogram predicting the individual risk of malignancy in the patients with branch duct type intraductal papillary mucinous neoplasms of the pancreas. Ann Surg 266(6):1062–1068.  https://doi.org/10.1097/SLA.0000000000001985 CrossRefGoogle Scholar
  26. 26.
    Jenkinson C, Elliott VL, Evans A et al (2016) Decreased serum thrombospondin-1 levels in pancreatic cancer patients up to 24 months prior to clinical diagnosis: association with diabetes mellitus. Clin Cancer Res 22:1734–1743CrossRefPubMedGoogle Scholar
  27. 27.
    De Jong K, Nio CY, Mearadji B et al (2012) Disappointing interobserver agreement among radiologists for a classifying diagnosis of pancreatic cysts using magnetic resonance imaging. Pancreas 41:278–282CrossRefPubMedGoogle Scholar
  28. 28.
    Kahlert C, Büchler MW, Weitz J (2008) Extended lymphadenectomy and vascular resection for pancreatic cancer. Chirurg 79:1115–1122CrossRefPubMedGoogle Scholar
  29. 29.
    Kahlert C, Melo SA, Protopopov A et al (2014) Identification of double-stranded genomic DNA spanning all chromosomes with mutated KRAS and p53 DNA in the serum exosomes of patients with pancreatic cancer. J Biol Chem 289:3869–3875CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Kim J, Bamlet WR, Oberg AL et al (2017) Detection of early pancreatic ductal adenocarcinoma with thrombospondin-2 and CA19-9 blood markers. Sci Transl Med.  https://doi.org/10.1126/scitranslmed.aah5583 Google Scholar
  31. 31.
    Langner C (2017) Hereditary gastric and pancreatic cancer. Pathologe 38:164–169CrossRefPubMedGoogle Scholar
  32. 32.
    Matsubayashi H, Watanabe H, Yamaguchi T et al (1999) Multiple K‑ras mutations in hyperplasia and carcinoma in cases of human pancreatic carcinoma. Jpn J Cancer Res 90:841–848CrossRefPubMedGoogle Scholar
  33. 33.
    Matsubayashi H, Matsui T, Yabuuchi Y et al (2016) Endoscopic ultrasonography guided-fine needle aspiration for the diagnosis of solid pancreaticobiliary lesions: clinical aspects to improve the diagnosis. World J Gastroenterol 22:628–640CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Matsubayashi H, Takaori K, Morizane C et al (2017) Familial pancreatic cancer: concept, management and issues. World J Gastroenterol 23:935–948CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Melo SA, Luecke LB, Kahlert C et al (2015) Glypican-1 identifies cancer exosomes and detects early pancreatic cancer. Nature 523:177–182CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Moutinho-Ribeiro P, Coelho R, Giovannini M et al (2017) Pancreatic cancer screening: still a delusion? Pancreatology 17(5):754–765.  https://doi.org/10.1016/j.pan.2017.07.001 CrossRefPubMedGoogle Scholar
  37. 37.
    Mukewar S, De Pretis N, Aryal-Khanal A et al (2016) Fukuoka criteria accurately predict risk for adverse outcomes during follow-up of pancreatic cysts presumed to be intraductal papillary mucinous neoplasms. Gut 66(10):1811–1817.  https://doi.org/10.1136/gutjnl-2016-311615 CrossRefPubMedGoogle Scholar
  38. 38.
    Neoptolemos JP, Palmer DH, Ghaneh P et al (2017) Comparison of adjuvant gemcitabine and capecitabine with gemcitabine monotherapy in patients with resected pancreatic cancer (ESPAC-4): a multicentre, open-label, randomised, phase 3 trial. Lancet 389:1011–1024CrossRefPubMedGoogle Scholar
  39. 39.
    Pimienta M, Edderkaoui M, Wang R et al (2017) The potential for circulating tumor cells in pancreatic cancer management. Front Physiol 8:381CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Rahbari M, Rahbari N, Reissfelder C et al (2016) Exosomes: novel implications in diagnosis and treatment of gastrointestinal cancer. Langenbecks Arch Surg 401:1097–1110CrossRefPubMedGoogle Scholar
  41. 41.
    Rahbari NN, Bork U, Hinz U et al (2012) AB0 blood group and prognosis in patients with pancreatic cancer. BMC Cancer 12:319CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Robert Koch Institut www.rki.de. Zugegriffen: 15.12.2017
  43. 43.
    Seufferlein T, Porzner M, Becker T et al (2013) S3-guideline exocrine pancreatic cancer. Z Gastroenterol 51:1395–1440CrossRefPubMedGoogle Scholar
  44. 44.
    Shindo K, Yu J, Suenaga M et al (2017) Deleterious germline mutations in patients with apparently sporadic pancreatic adenocarcinoma. J Clin Oncol 35(30):3382–3390.  https://doi.org/10.1200/JCO.2017.72.3502 CrossRefPubMedGoogle Scholar
  45. 45.
    Siegel RL, Miller KD, Jemal A (2015) Cancer statistics, 2015. Ca Cancer J Clin 65:5–29CrossRefPubMedGoogle Scholar
  46. 46.
    Suker M, Beumer BR, Sadot E et al (2016) FOLFIRINOX for locally advanced pancreatic cancer: a systematic review and patient-level meta-analysis. Lancet Oncol 17:801–810CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Taylor DD, Gercel-Taylor C (2008) MicroRNA signatures of tumor-derived exosomes as diagnostic biomarkers of ovarian cancer. Gynecol Oncol 110:13–21CrossRefPubMedGoogle Scholar
  48. 48.
    Untch M, Huober J, Jackisch C et al (2017) Initial treatment of patients with primary breast cancer: evidence, controversies, consensus: spectrum of opinion of German specialists at the 15th International st. Gallen Breast Cancer Conference (vienna 2017). Geburtshilfe Frauenheilkd 77:633–644CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Vasen H, Ibrahim I, Ponce CG et al (2016) Benefit of surveillance for pancreatic cancer in high-risk individuals: outcome of long-term prospective follow-up studies from three European Expert Centers. J Clin Oncol 34:2010–2019CrossRefPubMedGoogle Scholar
  50. 50.
    Vege SS, Ziring B, Jain R et al (2015) American gastroenterological association institute guideline on the diagnosis and management of asymptomatic neoplastic pancreatic cysts. Gastroenterology 148:819–822 (quize 812–813)CrossRefPubMedGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2017

Authors and Affiliations

  • C. Kahlert
    • 1
  • M. Distler
    • 1
  • D. Aust
    • 2
    • 3
  • L. Gieldon
    • 4
  • J. Weitz
    • 1
  • T. Welsch
    • 1
  1. 1.Klinik und Poliklinik für Viszeral‑, Thorax- und Gefäßchirurgie (VTG)Universitätsklinikum Carl Gustav Carus an der Technischen Universität DresdenDresdenDeutschland
  2. 2.Institut für PathologieUniversitätsklinikum Carl Gustav Carus an der Technischen Universität DresdenDresdenDeutschland
  3. 3.Tumor- und Normalgewebebank des UniversitätskrebszentrumsUniversitätsklinikum Carl Gustav Carus an der Technischen Universität DresdenDresdenDeutschland
  4. 4.Institut für Klinische GenetikUniversitätsklinikum Carl Gustav Carus an der Technische Universität DresdenDresdenDeutschland

Personalised recommendations