Der Chirurg

, Volume 84, Issue 8, pp 690–697 | Cite as

Tumor und Transplantation

Chirurgie und Forschung

Zusammenfassung

Tumortherapie und Transplantation, verbunden mit der zwangsläufig notwendigen Immunsuppression, scheinen unüberbrückbare Gegensätze zu sein. Die klinische Realität zeigt jedoch, dass die Transplantation bei vielen primären Lebertumoren im frühen Stadium wohl die effektivste Therapie darstellt. Die nach jeder Transplantation notwendige Immunsuppression kann jedoch die Bildung von Tumorrezidiven begünstigen. Die Immunsuppression führt auch zu einer deutlich erhöhten Rate von De-novo-Tumoren bei allen Transplantatempfängern. Aber längst nicht alle Immunsuppressiva haben den gleichen Effekt auf Tumoren. Die Klasse der mTOR-Inhibitoren zeigt im experimentellen, aber auch im klinischen Setting, ausgeprägte antitumorale Wirkungen und empfiehlt sich so als Immunsuppressivum der Wahl bei Patienten mit einem erhöhten Tumorrisiko. Diese Übersichtsarbeit soll den wissenschaftlichen Hintergrund für das klinische Problem von Tumoren und Transplantation darstellen.

Schlüsselwörter

Tumoren Transplantation Immunsuppression Hepatozelluläres Karzinom Cholangiozelluläres Karzinom 

Tumor and transplantation

Abstract

Tumor treatment and transplantation—associated with unavoidable mandatory immunosuppression—appear to be unreconcilable opposites. The clinical reality shows, however, that transplantation in many early stage primary tumors is the most effective treatment. The essential immunosuppression after transplantation can however promote tumor recurrence. Immunosuppression also leads to a significant increased rate of de novo tumors—in all organ transplant recipients. However, not all immunosuppressant drugs have the same effect on tumors. In experimental and clinical settings, the class of mTOR inhibitors has a clear antitumoral effect and is recommended as the immunosuppression treatment of choice in patients with increased tumor risk. The purpose of this review is to provide the reader with the scientific background regarding the clinical problem of tumors and transplantation.

Keywords

Tumor Transplantation Immunosuppression Hepatocellular carcinoma Cholangiocellular carcinoma 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt. M. Guba, J. Andrassy, M. Angele und C. Bruns geben an, dass kein Interessenkonflikt besteht. Das vorliegende Manuskript enthält keine Studien an Menschen oder Tieren.

Literatur

  1. 1.
    Alamo JM, Bernal C, Marin LM et al (2012) Antitumor efficacy of mammalian target of rapamycin inhibitor therapy in liver transplant recipients with oncological disease: a case-control study. Transplant Proc 44:2089–2092PubMedCrossRefGoogle Scholar
  2. 2.
    Birkeland SA, Storm HH (2002) Risk for tumor and other disease transmission by transplantation: a population-based study of unrecognized malignancies and other diseases in organ donors. Transplantation 74:1409–1413PubMedCrossRefGoogle Scholar
  3. 3.
    Bruns CJ, Koehl GE, Guba M et al (2004) Rapamycin-induced endothelial cell death and tumor vessel thrombosis potentiate cytotoxic therapy against pancreatic cancer. Clin Cancer Res 10:2109–2119PubMedCrossRefGoogle Scholar
  4. 4.
    Budde K, Lehner F, Sommerer C et al (2012) Conversion from cyclosporine to everolimus at 4.5 months posttransplant: 3-year results from the randomized ZEUS study. Am J Transplant 12(6):1528–1540PubMedCrossRefGoogle Scholar
  5. 5.
    Bulut S, Ozdemir BH, Alaaddinoglu EE et al (2005) Effect of cyclosporin A on apoptosis and expression of p53 and bcl-2 proteins in the gingiva of renal transplant patients. J Periodontol 76:691–695PubMedCrossRefGoogle Scholar
  6. 6.
    Campbell SB, Walker R, Tai SS et al (2012) Randomized controlled trial of sirolimus for renal transplant recipients at high risk for nonmelanoma skin cancer. Am J Transplant 12:1146–1156PubMedCrossRefGoogle Scholar
  7. 7.
    Darwish Murad S, Kim WR, Harnois DM et al (2012) Efficacy of neoadjuvant chemoradiation, followed by liver transplantation, for perihilar cholangiocarcinoma at 12 US centers. Gastroenterology 143:88–98 e83 (quiz e14)CrossRefGoogle Scholar
  8. 8.
    De Gruijl FR, Koehl GE, Voskamp P et al (2010) Early and late effects of the immunosuppressants rapamycin and mycophenolate mofetil on UV carcinogenesis. Int J Cancer 127:796–804Google Scholar
  9. 9.
    Dubay D, Sandroussi C, Sandhu L et al (2011) Liver transplantation for advanced hepatocellular carcinoma using poor tumor differentiation on biopsy as an exclusion criterion. Ann Surg 253:166–172PubMedCrossRefGoogle Scholar
  10. 10.
    Duignan S, Maguire D, Ravichand CS et al (2013) Neoadjuvant chemoradiotherapy followed by liver transplantation for unresectable cholangiocarcinoma: a single-centre national experience. HPBGoogle Scholar
  11. 11.
    Duvoux C, Roudot-Thoraval F, Decaens T et al (2012) Liver transplantation for hepatocellular carcinoma: a model including alpha-fetoprotein improves the performance of Milan criteria. Gastroenterology 143:986–994 e983 (quiz e914–985)PubMedCrossRefGoogle Scholar
  12. 12.
    Ekberg H, Bernasconi C, Tedesco-Silva H et al (2009) Calcineurin inhibitor minimization in the Symphony study: observational results 3 years after transplantation. Am J Transplant 9(8):1876–1885PubMedCrossRefGoogle Scholar
  13. 13.
    Euvrard S, Morelon E, Rostaing L et al (2012) Sirolimus and secondary skin-cancer prevention in kidney transplantation. N Engl J Med 367:329–339PubMedCrossRefGoogle Scholar
  14. 14.
    Gafter-Gvili A, Sredni B, Gal R et al (2003) Cyclosporin A-induced hair growth in mice is associated with inhibition of calcineurin-dependent activation of NFAT in follicular keratinocytes. Am J Physiol Cell Physiol 284:C1593–C1603PubMedCrossRefGoogle Scholar
  15. 15.
    Guba M, Angele M, Rentsch M et al (2013) Therapy of hepatocellular carcinoma before liver transplantation. Chirurg 84(5):385–390PubMedCrossRefGoogle Scholar
  16. 16.
    Guba M, Pratschke J, Hugo C et al (2012) Early conversion to a sirolimus-based, calcineurin-inhibitor-free immunosuppression in the SMART trial: observational results at 24 and 36months after transplantation. Transpl Int 25:416–423PubMedCrossRefGoogle Scholar
  17. 17.
    Guba M, Von Breitenbuch P, Steinbauer M et al (2002) Rapamycin inhibits primary and metastatic tumor growth by antiangiogenesis: involvement of vascular endothelial growth factor. Nat Med 8:128–135PubMedCrossRefGoogle Scholar
  18. 18.
    Guba M, Yezhelyev M, Eichhorn ME et al (2005) Rapamycin induces tumor-specific thrombosis via tissue factor in the presence of VEGF. Blood 105:4463–4469PubMedCrossRefGoogle Scholar
  19. 19.
    Hagness M, Foss A, Line PD et al (2013) Liver transplantation for nonresectable liver metastases from colorectal cancer. Ann Surg 257:800–806PubMedCrossRefGoogle Scholar
  20. 20.
    Hojo M, Morimoto T, Maluccio M et al (1999) Cyclosporine induces cancer progression by a cell-autonomous mechanism. Nature 397:530–534PubMedCrossRefGoogle Scholar
  21. 21.
    Hoogendijk-Van Den Akker JM, Harden PN, Hoitsma AJ et al (2013) Two-year randomized controlled prospective trial converting treatment of stable renal transplant recipients with cutaneous invasive squamous cell carcinomas to sirolimus. J Clin Oncol 31:1317–1323CrossRefGoogle Scholar
  22. 22.
    Horie Y, Suzuki A, Kataoka E et al (2004) Hepatocyte-specific Pten deficiency results in steatohepatitis and hepatocellular carcinomas. J Clin Invest 113:1774–1783PubMedGoogle Scholar
  23. 23.
    Hsieh AC, Liu Y, Edlind MP et al (2012) The translational landscape of mTOR signalling steers cancer initiation and metastasis. Nature 485:55–61PubMedCrossRefGoogle Scholar
  24. 24.
    Huber S, Bruns CJ, Schmid G et al (2007) Inhibition of the mammalian target of rapamycin impedes lymphangiogenesis. Kidney Int 71:771–777PubMedCrossRefGoogle Scholar
  25. 25.
    Jonas S, Al-Abadi H, Benckert C et al (2009) Prognostic significance of the DNA-index in liver transplantation for hepatocellular carcinoma in cirrhosis. Ann Surg 250:1008–1013PubMedCrossRefGoogle Scholar
  26. 26.
    Khalaf H, Alsuhaibani H, Al-Sugair A et al (2010) Use of yttrium-90 microsphere radioembolization of hepatocellular carcinoma as downstaging and bridge before liver transplantation: a case report. Transplant Proc 42:994–998PubMedCrossRefGoogle Scholar
  27. 27.
    Kim DY, Kwon DS, Salem R et al (2006) Successful embolization of hepatocelluar carcinoma with yttrium-90 glass microspheres prior to liver transplantation. J Gastrointest Surg 10:413–416PubMedCrossRefGoogle Scholar
  28. 28.
    Kim TJ, Kim N, Kang HJ et al (2010) FK506 causes cellular and functional defects in human natural killer cells. J Leukoc Biol 88:1089–1097PubMedCrossRefGoogle Scholar
  29. 29.
    Kornberg A, Kupper B, Tannapfel A et al (2012) Patients with non-[18 F]fludeoxyglucose-avid advanced hepatocellular carcinoma on clinical staging may achieve long-term recurrence-free survival after liver transplantation. Liver Transpl 18:53–61PubMedCrossRefGoogle Scholar
  30. 30.
    Kulik LM, Atassi B, Van Holsbeeck L et al (2006) Yttrium-90 microspheres (TheraSphere) treatment of unresectable hepatocellular carcinoma: downstaging to resection, RFA and bridge to transplantation. J Surg Oncol 94:572–586PubMedCrossRefGoogle Scholar
  31. 31.
    Lang H, Schlitt HJ, Schmidt H et al (1999) Total hepatectomy and liver transplantation for metastatic neuroendocrine tumors of the pancreas – a single center experience with ten patients. Langenbeck’s Arch Surg 384:370–377Google Scholar
  32. 32.
    Lebranchu Y, Thierry A, Toupance O et al (2009) Efficacy on renal function of early conversion from cyclosporine to sirolimus 3 months after renal transplantation: concept study. Am J Transplant 9(5):1115-1123PubMedCrossRefGoogle Scholar
  33. 33.
    Lee YR, Yang IH, Lee YH et al (2005) Cyclosporin A and tacrolimus, but not rapamycin, inhibit MHC-restricted antigen presentation pathways in dendritic cells. Blood 105:3951–3955PubMedCrossRefGoogle Scholar
  34. 34.
    Lerut JP, Orlando G, Adam R et al (2007) The place of liver transplantation in the treatment of hepatic epitheloid hemangioendothelioma: report of the European liver transplant registry. Ann Surg 246:949–957 (discussion 957)PubMedCrossRefGoogle Scholar
  35. 35.
    Lewandowski RJ, Kulik LM, Riaz A et al (2009) A comparative analysis of transarterial downstaging for hepatocellular carcinoma: chemoembolization versus radioembolization. Am J Transplant 9:1920–1928PubMedCrossRefGoogle Scholar
  36. 36.
    Lewis MA, Hubbard J (2011) Multimodal liver-directed management of neuroendocrine hepatic metastases. Int J Hepatol 2011:452343PubMedGoogle Scholar
  37. 37.
    Lu ZH, Shvartsman MB, Lee AY et al (2010) Mammalian target of rapamycin activator RHEB is frequently overexpressed in human carcinomas and is critical and sufficient for skin epithelial carcinogenesis. Cancer Res 70:3287–3298PubMedCrossRefGoogle Scholar
  38. 38.
    Ma S (2013) Biology and clinical implications of CD133(+) liver cancer stem cells. Exp Cell Res 319:126–132PubMedCrossRefGoogle Scholar
  39. 39.
    Maggs JR, Suddle AR, Aluvihare V et al (2012) Systematic review: the role of liver transplantation in the management of hepatocellular carcinoma. Aliment Pharmacol Ther 35:1113–1134PubMedCrossRefGoogle Scholar
  40. 40.
    Mehrabi A, Kashfi A, Schemmer P et al (2005) Surgical treatment of primary hepatic epithelioid hemangioendothelioma. Transplantation 80:S109–S112PubMedCrossRefGoogle Scholar
  41. 41.
    Menon S, Yecies JL, Zhang HH et al (2012) Chronic activation of mTOR complex 1 is sufficient to cause hepatocellular carcinoma in mice. Sci Signal 5:ra24PubMedCrossRefGoogle Scholar
  42. 42.
    Mueller MT, Hermann PC, Witthauer J et al (2009) Combined targeted treatment to eliminate tumorigenic cancer stem cells in human pancreatic cancer. Gastroenterology 137:1102–1113PubMedCrossRefGoogle Scholar
  43. 43.
    Niess H, Bao Q, Conrad C et al (2011) Selective targeting of genetically engineered mesenchymal stem cells to tumor stroma microenvironments using tissue-specific suicide gene expression suppresses growth of hepatocellular carcinoma. Ann Surg 254:767–774 (discussion 774–765)PubMedCrossRefGoogle Scholar
  44. 44.
    O’donovan P, Perrett CM, Zhang X et al (2005) Azathioprine and UVA light generate mutagenic oxidative DNA damage. Science 309:1871–1874CrossRefGoogle Scholar
  45. 45.
    Otto G, Herber S, Heise M et al (2006) Response to transarterial chemoembolization as a biological selection criterion for liver transplantation in hepatocellular carcinoma. Liver Transpl 12:1260–1267PubMedCrossRefGoogle Scholar
  46. 46.
    Pavel M, Baudin E, Couvelard A et al (2012) ENETS Consensus Guidelines for the management of patients with liver and other distant metastases from neuroendocrine neoplasms of foregut, midgut, hindgut, and unknown primary. Neuroendocrinology 95:157–176PubMedCrossRefGoogle Scholar
  47. 47.
    Penn I (1996) Posttransplantation de novo tumors in liver allograft recipients. Liver Transpl Surg 2:52–59PubMedCrossRefGoogle Scholar
  48. 48.
    Raimondi AR, Molinolo A, Gutkind JS (2009) Rapamycin prevents early onset of tumorigenesis in an oral-specific K-ras and p53 two-hit carcinogenesis model. Cancer Res 69:4159–4166PubMedCrossRefGoogle Scholar
  49. 49.
    Rivera A, Maxwell SA (2005) The p53-induced gene-6 (proline oxidase) mediates apoptosis through a calcineurin-dependent pathway. J Biol Chem 280:29346–29354PubMedCrossRefGoogle Scholar
  50. 50.
    Rosenau J, Bahr MJ, Von Wasielewski R et al (2002) Ki67, E-cadherin, and p53 as prognostic indicators of long-term outcome after liver transplantation for metastatic neuroendocrine tumors. Transplantation 73:386–394PubMedCrossRefGoogle Scholar
  51. 51.
    Rovira J, Sabet-Baktach M, Eggenhofer E et al (2013) A color-coded reporter model to study the effect of immunosuppressants on CD8 + T-cell memory in antitumor and alloimmune responses. Transplantation 95:54–62PubMedCrossRefGoogle Scholar
  52. 52.
    Sangro B, Carpanese L, Cianni R et al (2011) Survival after yttrium-90 resin microsphere radioembolization of hepatocellular carcinoma across Barcelona clinic liver cancer stages: a European evaluation. Hepatology 54:868–878PubMedCrossRefGoogle Scholar
  53. 53.
    Schena FP, Pascoe MD, Alteru J et al (2009) Conversion from calcineurin inhibitors to sirolimus maintenance therapy in renal allograft recipients: 24-month efficacy and safety results from the CONVERT trial. Transplantation 87(2):233–242PubMedCrossRefGoogle Scholar
  54. 54.
    Schnitzbauer AA, Zuelke C, Graeb C et al (2010) A prospective randomised, open-labeled, trial comparing sirolimus-containing versus mTOR-inhibitor-free immunosuppression in patients undergoing liver transplantation for hepatocellular carcinoma. BMC Cancer 10:190PubMedCrossRefGoogle Scholar
  55. 55.
    Seeliger H, Guba M, Koehl GE et al (2004) Blockage of 2-deoxy-D-ribose-induced angiogenesis with rapamycin counteracts a thymidine phosphorylase-based escape mechanism available for colon cancer under 5-fluorouracil therapy. Clin Cancer Res 10:1843–1852PubMedCrossRefGoogle Scholar
  56. 56.
    Stallone G, Infante B, Pontrelli P et al (2009) ID2-VEGF-related pathways in the pathogenesis of Kaposi’s sarcoma: a link disrupted by rapamycin. Am J Transplant 9:558–566PubMedCrossRefGoogle Scholar
  57. 57.
    Stallone G, Schena A, Infante B et al (2005) Sirolimus for Kaposi’s sarcoma in renal-transplant recipients. N Engl J Med 352:1317–1323PubMedCrossRefGoogle Scholar
  58. 58.
    Sugie N, Fujii N, Danno K (2002) Cyclosporin-A suppresses p53-dependent repair DNA synthesis and apoptosis following ultraviolet-B irradiation. Photodermatol Photoimmunol Photomed 18:163–168PubMedCrossRefGoogle Scholar
  59. 59.
    Teng CL, Hwang WL, Chen YJ et al (2012) Sorafenib for hepatocellular carcinoma patients beyond Milan criteria after orthotopic liver transplantation: a case control study. World J Surg Oncol 10:41PubMedCrossRefGoogle Scholar
  60. 60.
    Toso C, Meeberg GA, Bigam DL et al (2007) De novo sirolimus-based immunosuppression after liver transplantation for hepatocellular carcinoma: long-term outcomes and side effects. Transplantation 83:1162–1168PubMedCrossRefGoogle Scholar
  61. 61.
    Tsochatzis E, Garcovich M, Marelli L et al (2013) Transarterial embolization as neo-adjuvant therapy pretransplantation in patients with hepatocellular carcinoma. Liver IntGoogle Scholar
  62. 62.
    Vajdic CM, Van Leeuwen MT (2009) Cancer incidence and risk factors after solid organ transplantation. Int J Cancer 125:1747–1754PubMedCrossRefGoogle Scholar
  63. 63.
    Van Kesteren PC, Beems RB, Luijten M et al (2009) DNA repair-deficient Xpa/p53 knockout mice are sensitive to the non-genotoxic carcinogen cyclosporine A: escape of initiated cells from immunosurveillance? Carcinogenesis 30:538–543CrossRefGoogle Scholar
  64. 64.
    Van Leeuwen MT, Webster AC, Mccredie MR et al (2010) Effect of reduced immunosuppression after kidney transplant failure on risk of cancer: population based retrospective cohort study. BMJ 340:c570CrossRefGoogle Scholar
  65. 65.
    Vivarelli M, Dazzi A, Zanello M et al (2010) Effect of different immunosuppressive schedules on recurrence-free survival after liver transplantation for hepatocellular carcinoma. Transplantation 89:227–231PubMedCrossRefGoogle Scholar
  66. 66.
    Wimmer CD, Rentsch M, Crispin A et al (2007) The janus face of immunosuppression – de novo malignancy after renal transplantation: the experience of the Transplantation Center Munich. Kidney Int 71:1271–1278PubMedCrossRefGoogle Scholar
  67. 67.
    Xu J, Shen ZY, Chen XG et al (2007) A randomized controlled trial of Licartin for preventing hepatoma recurrence after liver transplantation. Hepatology 45:269–276PubMedCrossRefGoogle Scholar
  68. 68.
    Yarosh DB, Pena AV, Nay SL et al (2005) Calcineurin inhibitors decrease DNA repair and apoptosis in human keratinocytes following ultraviolet B irradiation. J Invest Dermatol 125:1020–1025PubMedCrossRefGoogle Scholar
  69. 69.
    Zhang Q, Chen H, Li Q et al (2011) Combination adjuvant chemotherapy with oxaliplatin, 5-fluorouracil and leucovorin after liver transplantation for hepatocellular carcinoma: a preliminary open-label study. Invest New Drugs 29:1360–1369PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Klinik für Allgemeine-, Viszeral-, Transplantations-, Gefäß- und ThoraxchirurgieKlinikum der Universität München, Campus GrosshadernMünchenDeutschland
  2. 2.Transplantationszentrum MünchenKlinikum der Universität MünchenMünchenDeutschland

Personalised recommendations