Der Chirurg

, Volume 83, Issue 6, pp 511–518 | Cite as

Genetik der Phäochromozytome

  • B. Bausch
  • A. Malinoc
  • L. Maruschke
  • C. Offergeld
  • S. Gläsker
  • H.C. Rischke
  • M. Brauckhoff
  • C.C. Boedeker
  • H.P.H. Neumann
Leitthema

Zusammenfassung

Etwa ein Drittel aller Patienten mit Phäochromozytomen sind einem hereditären Tumorsyndrom zuzuordnen. Hierzu gehören die multiple endokrine Neoplasie Typ 2 (MEN2), verursacht durch Mutationen des RET-Gens, das von-Hippel-Lindau-Syndrom (VHL, VHL-Gen), die Neurofibromatose Typ 1 (NF1, NF1-Gen), die Paragangliomsyndrome Typ 1 bis 4 (PGL1–4, SDHD-, SDHAF2-, SDHC-, SDHB-Gene) und die familiären Phäochromozytomsyndrome (SDHA-, TMEM127-, MAX-Gene). Patienten mit hereditären Phäochromozytomen haben ein lebenslanges Rezidivrisiko. Daneben kommen extraparaganglionäre Tumoren häufig bei der MEN2 als medulläres Schilddrüsenkarzinom, beim VHL-Syndrom als Nierenzellkarzinom oder neuroendokrines Pankreaskarzinom sowie als Hämangioblastome von Retina und Zentralnervensystem und vereinzelt als Nierenzellkarzinom beim PGL4-Syndrom und beim PGL3-Syndrom vor. Das genetische Screening ist somit unverzichtbarer Bestandteil der Klassifikation von Phäochromozytomen geworden und stellt den Eckpfeiler für eine erfolgreiche präventivmedizinische Versorgung der Patienten und ihrer Angehörigen dar.

Schlüsselwörter

Phäochromozytome Paragangliome Hereditäre Phäochromozytome Phäochromozytomassoziierte Syndrome Molekulargenetik 

Genetics of pheochromocytoma

Abstract

About one third of all patients with a pheochromocytoma are carriers of germ line mutations of 1 of the 10 susceptibility genes. Thus, these patients can be diagnosed and classified with specific tumor syndromes. This group is composed of the entities of multiple endocrine neoplasia type 2 (MEN2) due to mutations in the RET gene, von Hippel-Lindau disease (VHL, VHL gene), the paraganglioma syndromes types 1–4 (PGL1–4) due to mutations of the genes SDHD, SDHAF2, SDHC, SDHB, neurofibromatosis type 1 (NF1) due to mutations of the NF1 gene and familial pheochromocytoma syndromes due to mutations of the SDHA, TMEM127 and MAX genes. Patients with hereditary pheochromocytomas run a lifelong risk of relapse of pheochromocytoma. In addition extraparaganglial tumors are frequent and include medullary thyroid carcinoma in MEN2 or renal cancer or neuroendocrine pancreatic cancer as well as hemangioblastomas of the retina and the central nervous system in VHL. Furthermore, renal cancer may be associated with PGL4 and PGL3. In conclusion, molecular genetic screening is essential for the diagnosis of pheochromocytoma-associated cancer syndromes and is thus the cornerstone for successful lifelong preventive medicine of such patients and their relatives.

Keywords

Pheochromocytoma Paraganglioma Hereditary pheochromocytoma Pheochromocytoma-associated syndromes Molecular genetic 

Literatur

  1. 1.
    Anonymous (1988) Neurofibromatosis. Conference statement. National institutes of health consensus development conference. Arch Neurol 45:575–578CrossRefGoogle Scholar
  2. 2.
    Astuti D, Ricketts CJ, Chowdhury R et al (2010) Mutation analysis of HIF prolyl hydroxylases (PHD/EGLN) in individuals with features of phaeochromocytoma and renal cell carcinoma susceptibility. Endocr Relat Cancer 18:73–83PubMedCrossRefGoogle Scholar
  3. 3.
    Bausch B, Borozdin W, Mautner VF et al (2007) Germline NF1 mutational spectra and loss-of-heterozygosity analyses in patients with pheochromocytoma and neurofibromatosis type 1. J Clin Endocrinol Metab 92:2784–2792PubMedCrossRefGoogle Scholar
  4. 4.
    Bausch B, Borozdin W, Neumann HP (2006) Clinical and genetic characteristics of patients with neurofibromatosis type 1 and pheochromocytoma. N Engl J Med 354:2729–2731PubMedCrossRefGoogle Scholar
  5. 5.
    Bayley JP, Kunst HP, Cascon A et al (2010) SDHAF2 mutations in familial and sporadic paraganglioma and phaeochromocytoma. Lancet Oncol 11:366–372PubMedCrossRefGoogle Scholar
  6. 6.
    Burnichon N, Briere JJ, Libe R et al (2010) SDHA is a tumor suppressor gene causing paraganglioma. Hum Mol Genet 19:3011–3020PubMedCrossRefGoogle Scholar
  7. 7.
    Comino-Mendez I, Gracia-Aznarez FJ, Schiavi F et al (2011) Exome sequencing identifies MAX mutations as a cause of hereditary pheochromocytoma. Nat Genet 43:663–667PubMedCrossRefGoogle Scholar
  8. 8.
    DeLellis RA, Heitz PU, Lloyd RV, Eng C (Hrsg) (2003) Pathology and molecular genetics of endocrine tumours (WHO classification of tumours of endocrine organs). IARC Press, LyonGoogle Scholar
  9. 9.
    Frank-Raue K, Rybicki LA, Erlic Z et al (2011) Risk profiles and penetrance estimations in multiple endocrine neoplasia type 2A caused by germline RET mutations located in exon 10. Hum Mutat 32:51–58PubMedCrossRefGoogle Scholar
  10. 10.
    Gutmann DH, Aylsworth A, Carey JC et al (1997) The diagnostic evaluation and multidisciplinary management of neurofibromatosis 1 and neurofibromatosis 2. JAMA 278:51–57PubMedCrossRefGoogle Scholar
  11. 11.
    Hao HX, Khalimonchuk O, Schraders M et al (2009) SDH5, a gene required for flavination of succinate dehydrogenase, is mutated in paraganglioma. Science 325:1139–1142PubMedCrossRefGoogle Scholar
  12. 12.
    Hensen EF, Jordanova ES, Minderhout IJ van et al (2004) Somatic loss of maternal chromosome 11 causes parent-of-origin-dependent inheritance in SDHD-linked paraganglioma and phaeochromocytoma families. Oncogene 23:4076–4083PubMedCrossRefGoogle Scholar
  13. 13.
    Kloos RT, Eng C, Evans DB et al (2009) Medullary thyroid cancer: management guidelines of the American Thyroid Association. Thyroid 19:565–612PubMedCrossRefGoogle Scholar
  14. 14.
    Malinoc A, Sullivan M, Wiech T et al (2012) Biallelic inactivation of the SDHC gene in renal carcinoma associated with paraganglioma syndrome type 3. Endocr Relat Cancer [Epub ahead of print]Google Scholar
  15. 15.
    Mannelli M, Castellano M, Schiavi F et al (2009) Clinically guided genetic screening in a large cohort of italian patients with pheochromocytomas and/or functional or nonfunctional paragangliomas. J Clin Endocrinol Metab 94:1541–1547PubMedCrossRefGoogle Scholar
  16. 16.
    Mannelli M, Ercolino T, Giache V et al (2007) Genetic screening for pheochromocytoma: should SDHC gene analysis be included? J Med Genet 44:586–587PubMedCrossRefGoogle Scholar
  17. 17.
    Milos IN, Frank-Raue K, Wohllk N et al (2008) Age-related neoplastic risk profiles and penetrance estimations in multiple endocrine neoplasia type 2A caused by germ line RET Cys634Trp (TGC > TGG) mutation. Endocr Relat Cancer 15:1035–1041PubMedCrossRefGoogle Scholar
  18. 18.
    Munirajan AK, Ando K, Mukai A et al (2008) KIF1Bbeta functions as a haploinsufficient tumor suppressor gene mapped to chromosome 1p36.2 by inducing apoptotic cell death. J Biol Chem 283:24426–24434PubMedCrossRefGoogle Scholar
  19. 19.
    Neumann H (2008) Pheochromocytoma. In: Fauci A, Longo DL, Braunwald E (Hrsg) Harrison’s principles of internal medicine, 17. Aufl. McGraw-Hill ProfessionalGoogle Scholar
  20. 20.
    Neumann HP, Bausch B, McWhinney SR et al (2002) Germ-line mutations in nonsyndromic pheochromocytoma. N Engl J Med 346:1459–1466PubMedCrossRefGoogle Scholar
  21. 21.
    Neumann HP, Pawlu C, Peczkowska M et al (2004) Distinct clinical features of paraganglioma syndromes associated with SDHB and SDHD gene mutations. JAMA 292:943–951PubMedCrossRefGoogle Scholar
  22. 22.
    Peczkowska M, Cascon A, Prejbisz A et al (2008) Extra-adrenal and adrenal pheochromocytomas associated with a germline SDHC mutation. Nat Clin Pract Endocrinol Metab 4:111–115PubMedCrossRefGoogle Scholar
  23. 23.
    Qin Y, Yao L, King EE et al (2010) Germline mutations in TMEM127 confer susceptibility to pheochromocytoma. Nat Genet 42:229–233PubMedCrossRefGoogle Scholar
  24. 24.
    Schussheim DH, Skarulis MC, Agarwal SK et al (2001) Multiple endocrine neoplasia type 1: new clinical and basic findings. Trends Endocrinol Metab 12:173–178PubMedCrossRefGoogle Scholar
  25. 25.
    Tischler AS (2008) Pheochromocytoma and extra-adrenal paraganglioma: updates. Arch Pathol Lab Med 132:1272–1284PubMedGoogle Scholar
  26. 26.
    Vanharanta S, Buchta M, McWhinney SR et al (2004) Early-onset renal cell carcinoma as a novel extraparaganglial component of SDHB-associated heritable paraganglioma. Am J Hum Genet 74:153–159PubMedCrossRefGoogle Scholar
  27. 27.
    Walther MM, Herring J, Enquist E et al (1999) von Recklinghausen’s disease and pheochromocytomas. J Urol 162:1582–1586PubMedCrossRefGoogle Scholar
  28. 28.
    Wohllk N, Schweizer H, Erlic Z et al (2010) Multiple endocrine neoplasia type 2. Best Pract Res Clin Endocrinol Metab 24:371–387PubMedCrossRefGoogle Scholar
  29. 29.
    Yao L, Schiavi F, Cascon A et al (2010) Spectrum and prevalence of FP/TMEM127 gene mutations in pheochromocytomas and paragangliomas. JAMA 304:2611–2619PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • B. Bausch
    • 1
  • A. Malinoc
    • 2
  • L. Maruschke
    • 3
  • C. Offergeld
    • 4
  • S. Gläsker
    • 5
  • H.C. Rischke
    • 6
  • M. Brauckhoff
    • 7
  • C.C. Boedeker
    • 4
  • H.P.H. Neumann
    • 2
  1. 1.Abteilung Innere Medizin II, Gastroenterologie, Hepatologie, Endokrinologie und InfektiologieUniversitätsklinikum FreiburgFreiburgDeutschland
  2. 2.Abteilung Innere Medizin IV, Nephrologie und Allgemeinmedizin, Sektion für präventive MedizinUniversitätsklinikum FreiburgFreiburg im BreisgauDeutschland
  3. 3.Abteilung Allgemeine Radiologie, Radiologische KlinikUniversitätsklinikum FreiburgFreiburgDeutschland
  4. 4.Hals-Nasen-Ohren KlinikUniversitätsklinikum FreiburgFreiburgDeutschland
  5. 5.Neurochirurgische KlinikUniversitätsklinikum FreiburgFreiburgDeutschland
  6. 6.Abteilung Nuklearmedizin, Radiologische KlinikUniversitätsklinikum FreiburgFreiburgDeutschland
  7. 7.Department of SurgeryHaukeland University Hospital BergenBergenNorway

Personalised recommendations