Der Chirurg

, Volume 82, Issue 4, pp 295–302

Zellquellen für kardiovaskuläres Tissue Engineering

  • C. Klopsch
  • P. Donndorf
  • A. Kaminski
  • N. Ma
  • G. Steinhoff
Leitthema

Zusammenfassung

Zahlreiche Studien belegen eine signifikante Potenz verschiedener Stammzelltherapien zur Regeneration angeborener und erworbener Herzerkrankungen. Die Verwendung embryonaler Stammzellen und induzierter pluripotenter Stammzellen verspricht die mögliche Generierung und Regenerierung aller Strukturen des kardiovaskulären Systems. Fötale und adulte Stammzellen wie endotheliale Progenitorzellen, mesenchymale, hämatopoetische, kardiale Stammzellen und Myoblasten besitzen einerseits eingeschränktes multipotentes Differenzierungspotenzial. Andererseits sind sie offenbar parakrin hoch aktiv und unterstützen mit mehrfach bestätigter Sicherheit die Rekonstruktion und Herstellung kardiovaskulärer Strukturen. Auf dem visionären Weg zum durch „tissue engineering“ gebildeten, autonom funktionierenden autologen Herzen konnten bereits verschiedene vaskuläre, valvuläre und myokardiale Produkte erzeugt werden. Die Arbeit beschreibt mögliche Stammzellquellen für kardiovaskuläres Tissue Engineering und evaluiert deren Potenz und Sicherheit aus medizinischer wie ethischer Sicht entsprechend einer systematischen Literaturrecherche (Medline-Datenbank) und eigener Studien.

Schlüsselwörter

Stammzellen Pluripotent Multipotent Myokard Herzklappen 

Cell sources for cardiovascular tissue engineering

Abstract

Numerous studies have confirmed that stem cell therapy has significant potential for the regeneration of congenital and acquired heart diseases. The utilization of embryonic stem cells and induced pluripotent stem cells promises a possible generation and regeneration of all cardiovascular structures. On the one hand fetal and adult stem cells, e.g. endothelial progenitors, mesenchymal, hematopoietic, cardiac stem cells and myoblasts, possess limited potential for multilinear differentiation. On the other hand these cells have high paracrin activity and support with well-confirmed safety the reconstruction and formation of cardiovascular structures. On the visionary track towards an autonomously functioning autologous heart generated by tissue engineering, vascular, valvular and myocardial tissues have already been successfully created. This manuscript describes the possible stem cell sources for cardiovascular tissue engineering and evaluates their potency and safety from a medical and ethical point of view employing the data from systematic reviews (Medline database) and own investigations.

Keywords

Stem cells Pluripotent Multipotent Myocardium Heart valves 

Literatur

  1. 1.
    Garry DJ, Olson EN (2006) A common progenitor at the heart of development. Cell 127:1101–1104PubMedGoogle Scholar
  2. 2.
    Schneider VA, Mercola M (2001) Wnt antagonism initiates cardiogenesis in Xenopus laevis. Genes Dev 15:304–315PubMedGoogle Scholar
  3. 3.
    Shi Y, Katsev S, Cai C, Evans S (2000) BMP signaling is required for heart formation in vertebrates. Dev Biol 224:226–237PubMedGoogle Scholar
  4. 4.
    Kelly RG, Brown NA, Buckingham ME (2001) The arterial pole of the mouse heart forms from Fgf10-expressing cells in pharyngeal mesoderm. Dev Cell 1:435–440PubMedGoogle Scholar
  5. 5.
    Cai CL, Liang X, Shi Y et al (2003) Isl1 identifies a cardiac progenitor population that proliferates prior to differentiation and contributes a majority of cells to the heart. Dev Cell 5:877–889PubMedGoogle Scholar
  6. 6.
    Peterkin T, Gibson A, Loose M, Patient R (2005) The roles of GATA-4, -5 and -6 in vertebrate heart development. Semin Cell Dev Biol 16:83–94PubMedGoogle Scholar
  7. 7.
    Brown DD, Martz SN, Binder O et al (2005) Tbx5 and Tbx20 act synergistically to control vertebrate heart morphogenesis. Development 132:553–563PubMedGoogle Scholar
  8. 8.
    Buckingham M, Meilhac S, Zaffran S (2005) Building the mammalian heart from two sources of myocardial cells. Nat Rev Genet 6:826–835PubMedGoogle Scholar
  9. 9.
    Laugwitz KL, Moretti A, Lam J et al (2005) Postnatal isl1+ cardioblasts enter fully differentiated cardiomyocyte lineages. Nature 433:647–653PubMedGoogle Scholar
  10. 10.
    Moretti A, Caron L, Nakano A et al (2006) Multipotent embryonic isl1+ Progenietor cells lead to cardiac, smooth muscle, and endothelial cell diversification. Cell 127:1151–1165PubMedGoogle Scholar
  11. 11.
    Sun Y, Liang X, Najafi N et al (2007) Islet 1 is expressed in distinct cardiovascular lineages, including pacemaker and coronary vascular cells. Dev Biol 304:286–296PubMedGoogle Scholar
  12. 12.
    Kehat I, Kenyagin-Karsenti D, Snir M et al (2001) Human embryonic stem cells can differentiate into myocytes with structural and functional properties of cardiomyocytes. J Clin Invest 108:407–414PubMedGoogle Scholar
  13. 13.
    Pillekamp F, Reppel M, Rubenchyk O et al (2007) Force measurements of human embryonic stem cell-derived cardiomyocytes in an in vitro transplantation model. Stem Cells 25:174–180PubMedGoogle Scholar
  14. 14.
    Laflamme MA, Chen KY, Naumova AV et al (2007) Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts. Nat Biotechnol 25:1015–1024PubMedGoogle Scholar
  15. 15.
    Robey TE, Saiget MK, Reinecke H, Murry CE (2008) Systems approaches to preventing transplanted cell death in cardiac repair. J Mol Cell Cardiol 45:567–581PubMedGoogle Scholar
  16. 16.
    Assmus B, Honold J, Schächinger V et al (2006) Transcoronary transplantation of progenitor cells after myocardial infarction. N Engl J Med 355:1222–1232PubMedGoogle Scholar
  17. 17.
    Leor J, Cohen S (2004) Myocardial tissue engineering: creating a muscle patch for a wounded heart. Ann N Y Acad Sci 1015:312–319PubMedGoogle Scholar
  18. 18.
    Kofidis T, Bruin JL de, Hoyt G et al (2005) Myocardial restoration with embryonic stem cell bioartificial tissue transplantation. J Heart Lung Transplant 24:737–744PubMedGoogle Scholar
  19. 19.
    Nussbaum J, Minami E, Laflamme MA et al (2007) Transplantation of undifferentiated murine embryonic stem cells in the heart: teratoma formation and immune response. FASEB J 21:1345–1357PubMedGoogle Scholar
  20. 20.
    Barberi T, Bradbury M, Dincer Z et al (2007) Derivation of engraftable skeletal myoblasts from human embryonic stem cells. Nat Med 13:642–648PubMedGoogle Scholar
  21. 21.
    Knoepfler PS (2009) Deconstructing stem cell tumorigenicity: a roadmap to safe regenerative medicine. Stem Cells 27:1050–1056PubMedGoogle Scholar
  22. 22.
    De Coppi P, Bartsch G Jr, Siddiqui MM et al (2007) Isolation of amniotic stem cell lines with potential for therapy. Nat Biotechnol 25:100–106Google Scholar
  23. 23.
    Zhang X, Stojkovic P, Przyborski S et al (2006) Derivation of human embryonic stem cells from developing and arrested embryos. Stem Cells 24:2669–2676PubMedGoogle Scholar
  24. 24.
    French AJ, Adams CA, Anderson LS et al (2008) Development of human cloned blastocysts following somatic cell nuclear transfer with adult fibroblasts. Stem Cells 26:485–493PubMedGoogle Scholar
  25. 25.
    Meissner A, Jaenisch R (2006) Generation of nuclear transfer-derived pluripotent ES cells from cloned Cdx2-deficient blastocysts. Nature 439:212–215PubMedGoogle Scholar
  26. 26.
    St John J, Lovell-Badge R (2007) Human-animal cytoplasmic hybrid embryos, mitochondria, and an energetic debate. Nat Cell Biol 9:988–992Google Scholar
  27. 27.
    Mai Q, Yu Y, Li T et al (2007) Derivation of human embryonic stem cell lines from parthenogenetic blastocysts. Cell Res 17:1008–1019PubMedGoogle Scholar
  28. 28.
    Kim K, Lerou P, Yabuuchi A et al (2007) Histocompatible embryonic stem cells by parthenogenesis. Science 315:482–486PubMedGoogle Scholar
  29. 29.
    Guan K, Nayernia K, Maier LS et al (2006) Pluripotency of spermatogonial stem cells from adult mouse testis. Nature 440:1199–1203PubMedGoogle Scholar
  30. 30.
    Guan K, Wagner S, Unsöld B et al (2007) Generation of functional cardiomyocytes from adult mouse spermatogonial stem cells. Circ Res 100:1615–1625PubMedGoogle Scholar
  31. 31.
    Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676PubMedGoogle Scholar
  32. 32.
    Nakagawa M, Koyanagi M, Tanabe K et al (2008) Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nat Biotechnol 26:101–106PubMedGoogle Scholar
  33. 33.
    Maherali N, Sridharan R, Xie W et al (2007) Directly reprogrammed fibroblasts show global epigenetic remodeling and widespread tissue contribution. Cell Stem Cell 1:55–70PubMedGoogle Scholar
  34. 34.
    Okita K, Ichisaka T, Yamanaka S (2007) Generation of germline-competent induced pluripotent stem cells. Nature 448:313–317PubMedGoogle Scholar
  35. 35.
    Wernig M, Meissner A, Foreman R et al (2007) In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature 448:318–324PubMedGoogle Scholar
  36. 36.
    Mauritz C, Schwanke K, Reppel M et al (2008) Generation of functional murine cardiac myocytes from induced pluripotent stem cells. Circulation 118:507–517PubMedGoogle Scholar
  37. 37.
    Wilson KD, Venkatasubrahmanyam S, Jia F et al (2009) MicroRNA profiling of human-induced pluripotent stem cells. Stem Cells Dev 18:749–758PubMedGoogle Scholar
  38. 38.
    Chen S, Takanashi S, Zhang Q et al (2007) Reversine increases the plasticity of lineage-committed mammalian cells. Proc Natl Acad Sci U S A 104:10482–10487PubMedGoogle Scholar
  39. 39.
    Kadner A, Zund G, Maurus C et al (2004) Human umbilical cord cells for cardiovascular tissue engineering: a comparative study. Eur J Cardiothorac Surg 25:635–641PubMedGoogle Scholar
  40. 40.
    Furfaro EM, Gaballa MA (2007) Do adult stem cells ameliorate the damaged myocardium? Human cord blood as a potential source of stem cells. Curr Vasc Pharmacol 5:27–44PubMedGoogle Scholar
  41. 41.
    Henning RJ, Abu-Ali H, Balis JU et al (2004) Human umbilical cord blood mononuclear cells for the treatment of acute myocardial infarction. Cell Transplant 13:729–739PubMedGoogle Scholar
  42. 42.
    Ma N, Ladilov Y, Moebius JM et al (2006) Intramyocardial delivery of human CD133+ cells in a SCID mouse cryoinjury model: Bone marrow vs. cord blood-derived cells. Cardiovasc Res 71:158–169PubMedGoogle Scholar
  43. 43.
    Gaebel R, Furlani D, Sorg H et al (2011) CD105 expression on human mesenchymal stemcells depends on cell origin and determines a different healing performance in cardiac regeneration. PLoS One (in press)Google Scholar
  44. 44.
    Yerebakan C, Sandica E, Prietz S et al (2009) Autologous umbilical cord blood mononuclear cell transplantation preserves right ventricular function in a novel model of chronic right ventricular volume overload. Cell Transplant 18:855–868PubMedGoogle Scholar
  45. 45.
    Steinhoff G (2006) The regenerating heart – hope for children with congenital heart defects. Kinderkrankenschwester 25:47–50PubMedGoogle Scholar
  46. 46.
    Lin G, Garcia M, Ning H et al (2008) Defining stem and progenitor cells within adipose tissue. Stem Cells Dev 17:1053–1063PubMedGoogle Scholar
  47. 47.
    Lin CS, Xin ZC, Deng CH et al (2010) Defining adipose tissue-derived stem cells in tissue and in culture. Histol Histopathol 25:807–815PubMedGoogle Scholar
  48. 48.
    Schäffler A, Büchler C (2007) Concise review: adipose tissue-derived stromal cells – basic and clinical implications for novel cell-based therapies. Stem Cells 25:818–827PubMedGoogle Scholar
  49. 49.
    Rangappa S, Fen C, Lee EH et al (2003) Transformation of adult mesenchymal stem cells isolated from the fatty tissue into cardiomyocytes. Ann Thorac Surg 75:775–779PubMedGoogle Scholar
  50. 50.
    Planat-Benard V, Silvestre JS, Cousin B et al (2004) Plasticity of human adipose lineage cells toward endothelial cells: physiological and therapeutic perspectives. Circulation 109:656–663PubMedGoogle Scholar
  51. 51.
    Suga H, Eto H, Aoi N et al (2010) Adipose tissue remodeling under ischemia: death of adipocytes and activation of stem/progenitor cells. Plast Reconstr Surg 126:1911–1923PubMedGoogle Scholar
  52. 52.
    Oh JS, Kim KN, An SS et al (2010) Co-transplantation of Mouse Neural Stem Sells (mNSCs) with Adipose Tissue-derived Mesenchymal Stem Sells Improves mNSC Survival in a Rat Spinal Cord Injury Model. Cell Transplant. DOI: 10.3727/096368910X539083Google Scholar
  53. 53.
    Orlic D, Kajstura J, Chimenti S et al (2001) Bone marrow cells regenerate infarcted myocardium. Nature 410:701–705PubMedGoogle Scholar
  54. 54.
    Kalka C, Masuda H, Takahashi T et al (2000) Transplantation of ex vivo expanded endothelial progenitor cells for therapeutic neovascularization. Proc Natl Acad Sci U S A 97:3422–3427PubMedGoogle Scholar
  55. 55.
    Stamm C, Westphal B, Kleine HD et al (2003) Autologous bone-marrow stem-cell transplantation for myocardial regeneration. Lancet 361:45–46PubMedGoogle Scholar
  56. 56.
    Werner N, Wassmann S, Ahlers P et al (2007) Endothelial progenitor cells correlate with endothelial function in patients with coronary artery disease. Basic Res Cardiol 102:565–571PubMedGoogle Scholar
  57. 57.
    Hill JM, Zalos G, Halcox JP et al (2003) Circulating endothelial progenitor cells, vascular function, and cardiovascular risk. N Engl J Med 348:593–600PubMedGoogle Scholar
  58. 58.
    Werner N, Kosiol S, Schiegl T et al (2005) Circulating endothelial progenitor cells and cardiovascular outcomes. N Engl J Med 353:999–1007PubMedGoogle Scholar
  59. 59.
    Yerebakan C, Kaminski A, Liebold A, Steinhoff G (2007) Safety of intramyocardial stem cell therapy for the ischemic myocardium: results of the Rostock trial after 5-year follow-up. Cell Transplant 16:935–940PubMedGoogle Scholar
  60. 60.
    Abdel-Latif A, Bolli R, Tleyjeh IM et al (2007) Adult bone marrow-derived cells for cardiac repair: a systematic review and meta-analysis. Arch Intern Med 167:989–997PubMedGoogle Scholar
  61. 61.
    Schächinger V, Erbs S, Elsässer A et al (2006) Intracoronary bone marrow-derived progenitor cells in acute myocardial infarction. N Engl J Med 355:1210–1221PubMedGoogle Scholar
  62. 62.
    Stamm C, Kleine HD, Choi YH et al (2007) Intramyocardial delivery of CD133+ bone marrow cells and coronary artery bypass grafting for chronic ischemic heart disease: safety and efficacy studies. J Thorac Cardiovasc Surg 133:717–725PubMedGoogle Scholar
  63. 63.
    Kajstura J, Rota M, Whang B et al (2005) Bone marrow cells differentiate in cardiac cell lineages after infarction independently of cell fusion. Circ Res 96:127–137PubMedGoogle Scholar
  64. 64.
    Murry CE, Soonpaa MH, Reinecke H et al (2004) Haematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarcts. Nature 428:664–668PubMedGoogle Scholar
  65. 65.
    Chien KR (2006) Lost and found: cardiac stem cell therapy revisited. J Clin Invest 116:1838–1840PubMedGoogle Scholar
  66. 66.
    Klopsch C, Furlani D, Gaebel R et al (2009) Intracardiac injection of erythropoietin induces stem cell recruitment and improves cardiac functions in a rat myocardial infarction model. J Cell Mol Med 13:664–679PubMedGoogle Scholar
  67. 67.
    Stein A, Knodler M, Makowski M et al (2010) Local erythropoietin and endothelial progenitor cells improve regional cardiac function in acute myocardial infarction. BMC Cardiovasc Disord 10:43PubMedGoogle Scholar
  68. 68.
    Ward MR, Stewart DJ (2008) Erythropoietin and mesenchymal stromal cells in angiogenesis and myocardial regeneration: one plus one equals three? Cardiovasc Res 79:357–359PubMedGoogle Scholar
  69. 69.
    Wang W, Li W, Ong LL et al (2010) Localized SDF-1alpha gene release mediated by collagen substrate induces CD117 stem cells homing. J Cell Mol Med 14:392–402PubMedGoogle Scholar
  70. 70.
    Wang W, Li W, Ou L et al (2010) Polyethylenimine-mediated gene delivery into human bone marrow mesenchymal stem cells from patients. J Cell Mol Med. DOI: 10.1111/j.1582–4934.2010.01130.xGoogle Scholar
  71. 71.
    Kern S, Eichler H, Stoeve J et al (2006) Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells 24:1294–1301PubMedGoogle Scholar
  72. 72.
    Leri A, Kajstura J, Anversa P (2005) Cardiac stem cells and mechanisms of myocardial regeneration. Physiol Rev 85:1373–1416PubMedGoogle Scholar
  73. 73.
    Oswald J, Boxberger S, Jørgensen B et al (2004) Mesenchymal stem cells can be differentiated into endothelial cells in vitro. Stem Cells 22:377–384PubMedGoogle Scholar
  74. 74.
    Rangappa S, Entwistle JW, Wechsler AS, Kresh JY (2003) Cardiomyocyte-mediated contact programs human mesenchymal stem cells to express cardiogenic phenotype. J Thorac Cardiovasc Surg 126:124–132PubMedGoogle Scholar
  75. 75.
    Hakuno D, Fukuda K, Makino S et al (2002) Bone marrow-derived regenerated cardiomyocytes (CMG cells) express functional adrenergic and muscarinic receptors. Circulation 105:380–386PubMedGoogle Scholar
  76. 76.
    Zhang FB, Li L, Fang B et al (2005) Passage-restricted differentiation potential of mesenchymal stem cells into cardiomyocyte-like cells. Biochem Biophys Res Commun 336:784–792PubMedGoogle Scholar
  77. 77.
    Rosca AM, Burlacu A (2010) The effect of 5-azacytidine: evidence for alteration of the multipotent ability of mesenchymal stem cells. Stem Cells Dev. DOI:10.1089/scd.2010.0433Google Scholar
  78. 78.
    Huang XP, Sun Z, Miyagi Y et al (2010) Differentiation of allogeneic mesenchymal stem cells induces immunogenicity and limits their long-term benefits for myocardial repair. Circulation 122:2419–2429PubMedGoogle Scholar
  79. 79.
    Furlani D, Ugurlucan M, Ong L et al (2009) Is the intravascular administration of mesenchymal stem cells safe? Mesenchymal stem cells and intravital microscopy. Microvasc Res 77:370–376PubMedGoogle Scholar
  80. 80.
    Plotnikov AN, Shlapakova I, Szabolcs MJ et al (2007) Xenografted adult human mesenchymal stem cells provide a platform for sustained biological pacemaker function in canine heart. Circulation 116:706–713PubMedGoogle Scholar
  81. 81.
    Yang XJ, Zhou YF, Li HX et al (2008) Mesenchymal stem cells as a gene delivery system to create biological pacemaker cells in vitro. J Int Med Res 36:1049–1055PubMedGoogle Scholar
  82. 82.
    Menasché P (2007) Skeletal myoblasts as a therapeutic agent. Prog Cardiovasc Dis 50:7–17PubMedGoogle Scholar
  83. 83.
    Taylor DA, Atkins BZ, Hungspreugs P et al (1998) Regenerating functional myocardium: improved performance after skeletal myoblast transplantation. Nat Med 4:929–933PubMedGoogle Scholar
  84. 84.
    Pouly J, Hagège AA, Vilquin JT et al (2004) Does the functional efficacy of skeletal myoblast transplantation extend to nonischemic cardiomyopathy? Circulation 110:1626–1631PubMedGoogle Scholar
  85. 85.
    Choi YH, Stamm C, Hammer PE et al (2006) Cardiac conduction through engineered tissue. Am J Pathol 169:72–85PubMedGoogle Scholar
  86. 86.
    Anversa P, Kajstura J, Leri A, Bolli R (2006) Life and death of cardiac stem cells: a paradigm shift in cardiac biology. Circulation 113:1451–1463PubMedGoogle Scholar
  87. 87.
    Bergmann O, Bhardwaj RD, Bernard S et al (2009) Evidence for cardiomyocyte renewal in humans. Science 324:98–102PubMedGoogle Scholar
  88. 88.
    Beltrami AP, Barlucchi L, Torella D et al (2003) Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell 114:763–776PubMedGoogle Scholar
  89. 89.
    Bearzi C, Rota M, Hosoda T et al (2007) Human cardiac stem cells. Proc Natl Acad Sci U S A 104:14068–14073PubMedGoogle Scholar
  90. 90.
    Gäbel R, Klopsch C, Furlani D et al (2009) Single high-dose intramyocardial administration of erythropoietin promotes early intracardiac proliferation, proves safety and restores cardiac performance after myocardial infarction in rats. Interact Cardiovasc Thorac Surg 9:20–25PubMedGoogle Scholar
  91. 91.
    Rossini A, Zacheo A, Mocini D et al (2008) HMGB1-stimulated human primary cardiac fibroblasts exert a paracrine action on human and murine cardiac stem cells. J Mol Cell Cardiol 44:683–693PubMedGoogle Scholar
  92. 92.
    Madonna R, Shelat H, Xue Q et al (2009) Erythropoietin protects myocardin-expressing cardiac stem cells against cytotoxicity of tumor necrosis factor-alpha. Exp Cell Res 315:2921–2928PubMedGoogle Scholar
  93. 93.
    Kaminski A, Ma N, Donndorf P et al (2008) Endothelial NOS is required for SDF-1alpha/CXCR4-mediated peripheral endothelial adhesion of c-kit+ bone marrow stem cells. Lab Invest 88:58–69PubMedGoogle Scholar
  94. 94.
    Steinhoff G, Stock U, Karim N et al (2000) Tissue engineering of pulmonary heart valves on allogenic acellular matrix conduits: in vivo restoration of valve tissue. Circulation 102:III50–III55PubMedGoogle Scholar
  95. 95.
    Rabkin-Aikawa E, Farber M, Aikawa M, Schoen FJ (2004) Dynamic and reversible changes of interstitial cell phenotype during remodeling of cardiac valves. J Heart Valve Dis 13:841–847PubMedGoogle Scholar
  96. 96.
    Merryman WD, Liao J, Parekh A et al (2007) Differences in tissue-remodeling potential of aortic and pulmonary heart valve interstitial cells. Tissue Eng 13:2281–2289PubMedGoogle Scholar
  97. 97.
    Simon A, Wilhelmi M, Steinhoff G et al (1998) Cardiac valve endothelial cells: relevance in the long-term function of biologic valve prostheses. J Thorac Cardiovasc Surg 116:609–616PubMedGoogle Scholar
  98. 98.
    Stamm C, Khosravi A, Grabow N et al (2004) Biomatrix/polymer composite material for heart valve tissue engineering. Ann Thorac Surg 78:2084–2092PubMedGoogle Scholar
  99. 99.
    Grabow N, Schmohl K, Khosravi A et al (2004) Mechanical and structural properties of a novel hybrid heart valve scaffold for tissue engineering. Artif Organs 28:971–979PubMedGoogle Scholar
  100. 100.
    Bader A, Steinhoff G, Strobl K et al (2000) Engineering of human vascular aortic tissue based on a xenogeneic starter matrix. Transplantation 70:7–14PubMedGoogle Scholar
  101. 101.
    Zimmermann WH, Melnychenko I, Wasmeier G et al (2006) Engineered heart tissue grafts improve systolic and diastolic function in infarcted rat hearts. Nat Med 12:452–458PubMedGoogle Scholar
  102. 102.
    Matsubayashi K, Fedak PW, Mickle DA et al (2003) Improved left ventricular aneurysm repair with bioengineered vascular smooth muscle grafts. Circulation 108:II219–II225PubMedGoogle Scholar
  103. 103.
    Bader A, Schilling T, Teebken OE et al (1998) Tissue engineering of heart valves – human endothelial cell seeding of detergent acellularized porcine valves. Eur J Cardiothorac Surg 14:279–284PubMedGoogle Scholar
  104. 104.
    Tan MY, Zhi W, Wei RQ et al (2009) Repair of infarcted myocardium using mesenchymal stem cell seeded small intestinal submucosa in rabbits. Biomaterials 30:3234–3240PubMedGoogle Scholar
  105. 105.
    Lutter G, Metzner A, Jahnke T et al (2010) Percutaneous tissue-engineered pulmonary valved stent implantation. Ann Thorac Surg 89:259–263PubMedGoogle Scholar
  106. 106.
    Herring M, Gardner A, Glover J (1979) Seeding endothelium onto canine arterial prostheses. The effects of graft design. Arch Surg 114:679–682PubMedGoogle Scholar
  107. 107.
    Graham LM, Burkel WE, Ford JW et al (1982) Expanded polytetrafluoroethylene vascular prostheses seeded with enzymatically derived and cultured canine endothelial cells. Surgery 91:550–559PubMedGoogle Scholar
  108. 108.
    Riha GM, Lin PH, Lumsden AB et al (2005) Review: application of stem cells for vascular tissue engineering. Tissue Eng 11:1535–1552PubMedGoogle Scholar
  109. 109.
    Flanagan TC, Sachweh JS, Frese J et al (2009) In vivo remodeling and structural characterization of fibrin-based tissue-engineered heart valves in the adult sheep model. Tissue Eng Part A 15:2965–2976PubMedGoogle Scholar
  110. 110.
    Kaminski A, Klopsch C, Mark P et al (2010) Autologous valve replacement – CD133+ stem cell-plus-fibrin composite based sprayed cell seeding for intra-operative heart valve tissue engineering, Tissue Eng C. DOI:10.1089/ten.tec.2010.0051Google Scholar
  111. 111.
    Yildirim Y, Naito H, Didié M et al (2007) Development of a biological ventricular assist device: preliminary data from a small animal model. Circulation 116:I16–23PubMedGoogle Scholar
  112. 112.
    Zimmermann WH, Eschenhagen T (2007) Embryonic stem cells for cardiac muscle engineering. Trends Cardiovasc Med 17:134–140PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • C. Klopsch
    • 1
    • 2
  • P. Donndorf
    • 1
    • 2
  • A. Kaminski
    • 1
    • 2
  • N. Ma
    • 1
    • 2
  • G. Steinhoff
    • 1
    • 2
  1. 1.Referenz- und Translationszentrum für kardiale StammzelltherapieUniversität RostockRostockDeutschland
  2. 2.Klinik für Herzchirurgie, Universitäres Herzzentrum, Medizinische FakultätUniversität RostockRostockDeutschland

Personalised recommendations