Der Chirurg

, Volume 82, Issue 4, pp 303–310

Tissue Engineering von Gefäßprothesen

Leitthema

Zusammenfassung

Das „tissue engineering“ von Gefäßprothesen ist ein neues, aufgrund des zunehmenden Bedarfs an besseren Gefäßprothesen für Koronar- und periphere Revaskularisationseingriffe schnell wachsendes Forschungsgebiet. Klinisch verwendete kleinkalibrige künstliche Gefäßprothesen zeigen wegen Thrombose und intimaler Hyperplasie eine hohe Verschlussrate. Neue Ansätze wie dezellularisierte, natürliche oder synthetische dreidimensionale stabile oder abbaubare Matrizen werden für das zellfreie oder zellbasierte Gefäß-Tissue-Engineering entwickelt. Trotz der initialen limitierten klinischen Anwendungen der zellulären bioreaktorbasierten Methoden bestehen Nachteile wie die nicht sofortige Verfügbarkeit sowie ein hoher Zeit- und Kostenaufwand. Dem entgegengesetzt basiert unsere Forschung auf der Verwendung von zellfreien bioabbaubaren elektrogesponnenen porösen 3-D-Strukturen hergestellt aus Nano- und Mikro-Polycaprolacton-Fasern. Tierversuche bei Ratten und Schweinen haben gute Kurz- und Langzeitergebnisse nach arteriellem Gefäßersatz gezeigt mit optimaler Offenheitsrate, keiner Aneurysmabildung und Einwachsen von körpereigenen Zellen, welche eine vollständige luminale Endothelbeschichtung und eine homogene Besiedlung der Prothesenwand mit extrazellulärer Matrix und Angiogenesebildung ermöglichen. Darum glauben wir, dass unser In-vivo-Konzept des Gefäßprothesen-Tissue-Engineerings eine zukünftige klinische Option für kleinkalibrige bioabbaubare synthetische Gefäßprothesen darstellt.

Schlüsselwörter

Gefäßprothesen Tissue Engineering 3-D-Matrizen Elektrospinnen Bioabbaubare Polymere 

Tissue engineering of vascular prostheses

Abstract

Vascular tissue engineering represents a new but rapidly growing field due to the need for better vascular prostheses for coronary or peripheral revascularization procedures. Current synthetic prostheses have a high incidence of failure due to thrombosis and/or intimal hyperplasia especially in small caliber artificial vascular prostheses. New approaches such as decellularized, natural or synthetic, 3-D stable/degradable scaffolds are being developed for acellular or cell-based vascular replacements. The drawbacks of cellular bioreactor matured prostheses are delayed availability and that they are, labor and cost-intensive. However, some research groups have shown limited clinical applications. The acellular approach is based on a biodegradable, electrospun, porous 3-D structure made of nano- and micro-sized polycaprolactone fibers. Animal studies in rats and pigs have shown good short and long-term results after arterial replacement with autologous cellular and matrix ingrowth, angiogenesis, confluent endothelialization and absence of occlusions or aneurysm formation. Therefore, the in vivo vascular tissue engineering approach produces shelf-ready biodegradable vascular prostheses which might be an option for future clinical applications.

Keywords

Vascular prosthesis Tissue engineering 3D scaffolds Electrospinning Biodegradable polymer 

Literatur

  1. 1.
    Lysaght MJ, Jaklenec A, Deweerd E (2008) Great expectations: private sector activity in tissue engineering, regenerative medicine, and stem cell therapeutics. Tissue Eng Part A 14(2):305–315PubMedCrossRefGoogle Scholar
  2. 2.
    McKee JA, Banik SS, Boyer MJ et al (2003) Human arteries engineered in vitro. EMBO Rep 4:633–638PubMedCrossRefGoogle Scholar
  3. 3.
    Brewster DC (1997) Current controversies in the management of aortoiliac occlusive disease. Massachusetts General Hospital, Harvard Medical School, Boston, USA. J Vasc Surg 25(2):365–379PubMedCrossRefGoogle Scholar
  4. 4.
    De Bakey ME, Cooley DA, Crawford ES, Morris GC Jr (1958) Clinical application of a new flexible knitted Dacron arterial substitute. AMA Arch Surg 77(5):713–724Google Scholar
  5. 5.
    Soyer T, Lempinen M, Norton L, Eiseman B (1972) A new venous prosthesis. Surgery 72(6):864–872PubMedGoogle Scholar
  6. 6.
    Langer R, Vacanti JP (1993) Tissue engineering. Science 260(5110):920–926PubMedCrossRefGoogle Scholar
  7. 7.
    Walpoth BH, Bowlin GL (2005) The daunting quest for a small diameter vascular graft. Expert Rev Med Devices 2(6):647–651PubMedCrossRefGoogle Scholar
  8. 8.
    Breuer CK (2011) The development and translation of the tissue-engineered vascular graft. J Pediatr Surg 46(1):8–17PubMedCrossRefGoogle Scholar
  9. 9.
    Discher DE, Janmey P, Wang YL (2005) Tissue cells feel and respond to the stiffness of their substrate. Science 310(5751):1139–1114PubMedCrossRefGoogle Scholar
  10. 10.
    Galban CJB, Locke R (1999) Effects of spatial variation of cells and nutrient and product concentrations coupled with product inhibition on cell growth in a polymer scaffold. Biotechnol Bioeng 64(6):633–643PubMedCrossRefGoogle Scholar
  11. 11.
    Han J, Lazarovici P, Pomerantz C et al (2010) Co-electrospun blends of PLGA, gelatin, and elastin as potential nonthrombogenic scaffolds for vascular tissue engineering. Biomacromolecules [Epub ahead of print]Google Scholar
  12. 12.
    Hutmacher DW, Sittinger M, Risbud MV (2004) Scaffold-based tissue engineering: rationale for computer-aided design and solid free-form fabrication systems. Trends Biotechnol 22(7):354–362PubMedCrossRefGoogle Scholar
  13. 13.
    Yeong W-Y, Chua C-K, Leong K-F, Chandrasekaran M (2004) Rapid prototyping in tissue engineering: challenges and potential. Trends Biotechnol 22(12):643–652PubMedCrossRefGoogle Scholar
  14. 14.
    Sobral JM, Caridade SG, Sousa RA et al (2011) Three-dimensional plotted scaffolds with controlled pore size gradients: effect of scaffold geometry on mechanical performance and cell seeding efficiency. Acta Biomater 7(3):1009–1018PubMedCrossRefGoogle Scholar
  15. 15.
    Teebken OE, Haverich A (2002) Tissue engineering of small diameter vascular grafts. Eur J Vasc Endovasc Surg 23(6):475–485PubMedCrossRefGoogle Scholar
  16. 16.
    Flemming RG, Murphy CJ, Abrams GA et al (1999) Effects of synthetic micro- and nano-structured surfaces on cell behavior. Biomaterials 20(6):573–588PubMedCrossRefGoogle Scholar
  17. 17.
    Andrady AL (2008) Science and technology of polymer nanofibers. John Wiley & Sons Inc, Hoboken New JerseyGoogle Scholar
  18. 18.
    Nottelet B, Pektok E, Mandracchia D et al (2009) Factorial design optimization and in vivo feasibility of poly(epsilon-caprolactone)-micro- and nanofiber-based small diameter vascular grafts. J Biomed Mater Res A 89(4):865–875PubMedGoogle Scholar
  19. 19.
    Sell SA, Bowlin GL (2008) Creating small diameter bioresorbable vascular grafts through electrospinning. J Mater Chem 18(3):260–263CrossRefGoogle Scholar
  20. 20.
    Greiner A, Wendorff JH (2007) Electrospinning: a fascinating method for the preparation of ultrathin fibers. Angew Chem Int Ed Engl 46(30):5670–5703PubMedCrossRefGoogle Scholar
  21. 21.
    Teo WE, Ramakrishna S (2006) A review on electrospinning design and nanofibre assemblies. Nanotechnology 17(14):89–106CrossRefGoogle Scholar
  22. 22.
    Pillai CK, Sharma CP (2010) Review paper: absorbable polymeric surgical sutures: chemistry, production, properties, biodegradability, and performance. J Biomater Appl 25(4):291–366PubMedCrossRefGoogle Scholar
  23. 23.
    Cikirikcioglu M, Bowlin G, Cikirikcioglu YB et al (2005) Replacement of the rat aorta with fully degradable synthetic vascular prosthesis. Int J Artif Organs 28(9):890Google Scholar
  24. 24.
    Bölgen N, Menceloğlu YZ, Acatay K et al (2005) In vitro and in vivo degradation of non-woven materials made of poly(ε-caprolactone) nanofibers prepared by electrospinning under different conditions. J Biomater Sci Polym Ed 16(12):1537–1555PubMedCrossRefGoogle Scholar
  25. 25.
    Pektok E, Nottelet B, Tille J-C et al (2008) Degradation and healing characteristics of small-diameter poly(ε-caprolactone) vascular grafts in the rat systemic arterial circulation. Circulation 118(24):2563–2570PubMedCrossRefGoogle Scholar
  26. 26.
    Mugnai D, Mrowczynski W, Valence S de et al (2010) Novel biodegradable vascular prosthesis: short-term results after carotid artery replacement in the pig. Thorac Cardiov Surg 58(Supp 1):28–155CrossRefGoogle Scholar
  27. 27.
    Serruys PW, Kutryk MJB, Ong ATL (2006) Coronary-artery stents. N Engl J Med 354(5):483–495PubMedCrossRefGoogle Scholar
  28. 28.
    Innocente F, Mandracchia D, Pektok E et al (2009) Paclitaxel-eluting biodegradable synthetic vascular prostheses: a step towards reduction of neointima formation? Circulation 120(Suppl 11):37–45CrossRefGoogle Scholar
  29. 29.
    Theiler S, Mela P, Diamantouros SE et al (2011) Fabrication of highly porous scaffolds for tissue engineering based on star-shaped functional poly(caprolactone). Biotechnol Bioeng 108(3):694–703PubMedCrossRefGoogle Scholar
  30. 30.
    Teebken OE, Bader A, Steinhoff G, Haverich A (2000) Tissue engineering of vascular grafts: human cell seeding of decellularised porcine matrix. Eur J Vasc Endovasc Surg 19(4):381–386PubMedCrossRefGoogle Scholar
  31. 31.
    Koenneker S, Teebken OE, Bonehie M et al (2010) A biological alternative to alloplastic grafts in dialysis therapy: evaluation of an autologised bioartificial haemodialysis shunt vessel in a sheep model. Eur J Vasc Endovasc Surg 40(6):810–816PubMedCrossRefGoogle Scholar
  32. 32.
    Meinhart JG, Deutsch M, Fischlein T et al (2001) Clinical autologous in vitro endothelialization of 153 infrainguinal ePTFE grafts. Ann Thorac Surg 71(Suppl 5):S327–S331PubMedCrossRefGoogle Scholar
  33. 33.
    Hoerstrup SP, Zünd G, Sodian R et al (2001) Tissue engineering of small caliber vascular grafts. Eur J Cardiothorac Surg 20(1):164–169PubMedCrossRefGoogle Scholar
  34. 34.
    Niklason LE, Gao J, Abbott WM et al (1999) Functional arteries grown in vitro. Science 284(5413):489–493PubMedCrossRefGoogle Scholar
  35. 35.
    Shin’oka T, Imai Y, Ikada Y (2001) Transplantation of a tissue-engineered pulmonary artery. N Engl J Med 344(7):532–533CrossRefGoogle Scholar
  36. 36.
    McAllister TN, Maruszewski M, Garrido SA et al (2009) Effectiveness of haemodialysis access with an autologous tissue-engineered vascular graft: a multicentre cohort study. Lancet 373(9673):1440–1446PubMedCrossRefGoogle Scholar
  37. 37.
    Cao Y, Zhang B, Croll T et al (2008) Engineering tissue tubes using novel multilayered scaffolds in the rat peritoneal cavity. J Biomed Mater Res A 87(3):719–727PubMedGoogle Scholar
  38. 38.
    Visconti RP, Kasyanov V, Gentile C et al (2010) Towards organ printing: engineering an intra-organ branched vascular tree. Expert Opin Biol Ther 10(3):409–420PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Departement für Herz- und Gefässchirurgie, Medizinische FakultätUniversitätsspital GenfGenfSchweiz
  2. 2.Departement für PharmazeutikUniversität GenfGenfSchweiz

Personalised recommendations