Advertisement

Unerwünschte Effekte digitaler Gesundheitstechnologien: Eine Public-Health-Perspektive

  • Benjamin SchüzEmail author
  • Monika Urban
Leitthema

Zusammenfassung

Digitale Gesundheitstechnologien wie Gesundheits- und Medizin-Apps können potenziell große Teile der Bevölkerung mit evidenzbasierten Inhalten erreichen und so Gesundheitsförderung und Prävention verbessern. Unerwünschte Effekte, die durch den Gebrauch solcher Technologien entstehen können (z. B. Nebenwirkungen), werden aber bislang nur wenig in Public Health diskutiert.

In diesem Beitrag werden anhand einer narrativen Literaturübersicht mögliche unerwünschte Effekte dieser digitalen Technologien dargestellt. Sie werden gemäß einem sozialökologischen Ansatz für Gesundheit drei verschiedenen Wirkungsebenen zugeordnet: der individuellen Ebene, der Beziehungsebene und der Versorgungsebene. Die individuelle Ebene beinhaltet unerwünschte gesundheitliche, affektive, finanzielle und datenbezogene Effekte. Auf der Beziehungsebene wird zwischen Effekten auf das direkte soziale Umfeld und das Onlineumfeld unterschieden. Auf der Versorgungsebene zeigen sich Effekte, die durch Gebrauch und Missbrauch persönlicher Gesundheitsdaten, durch soziale Stratifizierung und mangelnde Inklusivität (Barrierefreiheit) entstehen.

Wir schlagen vor, solche unerwünschten Effekte präziser zu konzipieren, besser zu erfassen und zu dokumentieren und den Fokus von einer entwicklungszentrierten Diskussion von Risiken und Herausforderungen zu einer umfassenden Konzeption von Neben- und unerwünschten Wirkungen digitaler Gesundheitstechnologien zu verschieben. Die vorgeschlagene Einteilung in drei Wirkungsebenen kann hierbei hilfreich sein.

Schlüsselwörter

Nebenwirkungen Unerwünschte Effekte Gesundheitstechnologie Apps M‑Health 

Unintended consequences and side effects of digital health technology: a public health perspective

Abstract

The discussion of digital health technologies, in particular medical and health apps, is currently dominated by a focus on their potential to reach large parts of the population for the dissemination of evidence-based health promotion and prevention content. However, potentially unintended consequences, side effects, and negative effects of digital health technologies are rarely discussed in public health.

In this paper, via a narrative literature review, we propose a perspective on unintended consequences and side-effects of digital health technologies on multiple hierarchical levels of a socio-ecological model of health. Unintended consequences and side-effects of digital health technologies can be identified on an individual level, a level of social relationships, and a health services level.

We propose a broader conceptualization of unintended consequences and side-effects of digital health technology together with a more thorough documentation of such effects using multiple levels in a socio-ecological approach. This would build a cumulative evidence base of unintended effects and shift the focus from development-centered discussion of risks and challenges to a comprehensive conception of side effects and undesirable effects of digital health technologies. The proposed division into three effect levels may be helpful here.

Keywords

Side effects Unintended consequences Digital health Health and medical apps m‑Health 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

B. Schüz und M. Urban geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Literatur

  1. 1.
    Steinhubl SR, Muse ED, Topol EJ (2015) The emerging field of mobile health. Sci Transl Med 7:283rv3CrossRefGoogle Scholar
  2. 2.
    Scherenberg V, Kramer U (2013) Schöne neue Welt: Gesünder mit Health-Apps? Hintergründe, Handlungsbedarf und schlummernde Potenziale. In: Strahlendorf P (Hrsg) Jahrbuch Healthcare Marketing. New Business, Hamburg, S 115–119Google Scholar
  3. 3.
    Free C, Phillips G, Galli L et al (2013) The effectiveness of mobile-health technology-based health behaviour change or disease management interventions for health care consumers: a systematic review. PLoS Med 10:e1001362.  https://doi.org/10.1371/journal.pmed.1001362 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Marcolino MS, Oliveira JAQ, D’agostino M, Ribeiro AL, Alkmim MBM, Novillo-Ortiz D (2018) The impact of mHealth interventions: Systematic review of systematic reviews. JMIR Mhealth Uhealth 6:e23.  https://doi.org/10.2196/mhealth.8873 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Yang Q, Van Stee SK (2019) The comparative effectiveness of mobile phone interventions in improving health outcomes: meta-analytic review. J Med Internet Res 21:e11244.  https://doi.org/10.2196/11244 CrossRefGoogle Scholar
  6. 6.
    Miller L, Schüz B, Walters J, Walters EH (2017) Mobile technology interventions for asthma self-management: systematic review and meta-analysis. JMIR Mhealth Uhealth 5:e57CrossRefGoogle Scholar
  7. 7.
    Eysenbach G (1999) Towards the millennium of cybermedicine. J Med Internet Res 1:e2CrossRefGoogle Scholar
  8. 8.
    Albrecht U‑V (2016) Gesundheits-Apps und Risiken. In: Albrecht U‑V (Hrsg) Chancen und Risiken von Gesundheits-Apps (CHARISMHA). Medizinische Hochschule Hannover, Hannover, S 176–193 (http://www.digibib.tu-bs.de/?docid= 00060000. Zugegriffen 19.09.2019)Google Scholar
  9. 9.
    Orcha (2019) The ORCHA review. https://www.orcha.co.uk/our-solution/the-orcha-review/. Zugegriffen: 19. Sept. 2019
  10. 10.
    Boettcher J, Rozental A, Andersson G, Carlbring P (2014) Side effects in Internet-based interventions for Social Anxiety Disorder. Internet Interv 1:3–11CrossRefGoogle Scholar
  11. 11.
    Hatch A, Hoffman JE, Ross R, Docherty JP (2018) Expert consensus survey on digital health tools for patients with serious mental illness: optimizing for user characteristics and user support. JMIR Ment Health 5:e46CrossRefGoogle Scholar
  12. 12.
    Bundesinstitut Für Arzneimittel Und Medizinprodukte (2019) Orientierungshilfe Medical Apps. https://www.bfarm.de/DE/Medizinprodukte/Abgrenzung/MedicalApps/_node.html. Zugegriffen: 19. Sept. 2019
  13. 13.
    Regulation (EU) (2017on) 745 of the European Parliament and of the Council of 5 April 2017 on medical devices. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:02017R0745-20170505. Zugegriffen: 19. Sept. 2019
  14. 14.
    Albrecht UV, Hillebrand U, Von Jan U (2018) Relevance of trust marks and CE labels in german-language store descriptions of health apps: analysis. JMIR Mhealth Uhealth 6:e10394.  https://doi.org/10.2196/10394 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Dahlgren G, Whitehead M (2007) European strategies for tackling social inequalities in health: Levelling up part 2. WHO Regional Office for Europe, Copenhagen, DK. http://www.euro.who.int/__data/assets/pdf_file/0018/103824/E89384.pdf. Zugegriffen: 19. Sept. 2019
  16. 16.
    Chuchu N, Takwoingi Y, Dinnes J et al (2018) Smartphone applications for triaging adults with skin lesions that are suspicious for melanoma. Cochrane Database Syst Rev.  https://doi.org/10.1002/14651858.CD013192 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Huckvale K, Adomaviciute S, Prieto JT, Leow MKS, Car J (2015) Smartphone apps for calculating insulin dose: A systematic assessment. BMC Med 13:106.  https://doi.org/10.1186/s12916-015-0314-7 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Fernandez-Guerrero IM (2014) „WhatsAppitis“. Lancet 383:1040CrossRefGoogle Scholar
  19. 19.
    Khalid H, Shihab E, Nagappan M, Hassan AE (2015) What do mobile app users complain about? IEEE Softw 32:70–77CrossRefGoogle Scholar
  20. 20.
    Sarkar U, Gourley GI, Lyles CR et al (2016) Usability of commercially available mobile applications for diverse patients. J Gen Intern Med 31:1417–1426CrossRefGoogle Scholar
  21. 21.
    Hortensius J, Kars MC, Wierenga WS, Kleefstra N, Bilo HJG, Van Der Bijl JJ (2012) Perspectives of patients with type 1 or insulin-treated type 2 diabetes on self-monitoring of blood glucose: a qualitative study. BMC Public Health 12:167CrossRefGoogle Scholar
  22. 22.
    Urban M (2017) ’This really takes it out of you!‘ The senses and emotions in digital health practices of the elderly. Digit Health 3:2055207617701778PubMedPubMedCentralGoogle Scholar
  23. 23.
    Wicks P, Chiauzzi E (2015) ’Trust but verify‘ – five approaches to ensure safe medical apps. BMC Med 13:205CrossRefGoogle Scholar
  24. 24.
    Patterson H (2013) Contextual expectations of privacy in self-generated health information flows. In: TPRC 41: The 41st Research Conference on Communication, Information and Internet Policy (https://ssrn.com/abstract=2242144. Zugegriffen 19.09.2019)Google Scholar
  25. 25.
    Lupton D (2018) Digital health: critical and cross-disciplinary perspectives. Routledge, LondonGoogle Scholar
  26. 26.
    Hilts A, Parsons C, Knockel J (2016) Every step you fake: a comparative analysis of fitness tracker privacy and security. In: Open effect (https://openeffect.ca/reports/Every_Step_You_Fake.pdf. Zugegriffen 19.09.2019)Google Scholar
  27. 27.
    Venables E, Ndlovu Z, Munyaradzi D et al (2019) Patient and health-care worker experiences of an HIV viral load intervention using SMS: a qualitative study. PLoS ONE 14:e215236CrossRefGoogle Scholar
  28. 28.
    Cordeiro F, Epstein DA, Thomaz E et al (2015) Barriers and negative nudges: exploring challenges in food journaling. In: Proceedings of the 33rd annual ACM conference on human factors in computing systems. ACM, New York, NY, S 1159–1162Google Scholar
  29. 29.
    Harries T, Rettie R (2016) Walking as a social practice: dispersed walking and the organisation of everyday practices. Sociol Health Illn 38:874–883CrossRefGoogle Scholar
  30. 30.
    Carter S, Green J, Speed E (2018) Digital technologies and the biomedicalisation of everyday activities: the case of walking and cycling. Sociol Compass 12:e12572.  https://doi.org/10.1111/soc4.12572 CrossRefGoogle Scholar
  31. 31.
    Teixeira PJ, Carraça EV, Markland D, Silva MN, Ryan RM (2012) Exercise, physical activity, and self-determination theory: a systematic review. Int J Behav Nutr Phys Act 9:78.  https://doi.org/10.1186/1479-5868-9-78 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Attig C, Franke T (2019) I track, therefore I walk–Exploring the motivational costs of wearing activity trackers in actual users. Int J Hum Comput Stud 127:211–224CrossRefGoogle Scholar
  33. 33.
    Wohlers K (2016) SmartHealth – Wie smart ist Deutschland? In:Techniker Krankenkasse, Hamburg. https://www.tk.de/resource/blob/2043436/e3f8108901704282fbcbeca628642e4e/studienband-smarthealth-2016-data.pdf. Zugegriffen: 19. Sept. 2019
  34. 34.
    Dockweiler C, Filius J, Dockweiler U, Hornberg C (2015) Adoption of telemedicine services in post-hospital stroke care: a qualitative analysis of factors influencing the adoption from a patient’s perspective. Aktuel Neurol 42:197–204CrossRefGoogle Scholar
  35. 35.
    Jeon YA, Hale B, Knackmuhs E, Mackert M (2018) Weight stigma goes viral on the internet: systematic assessment of youtube comments attacking overweight men and women. J Med Internet Res 20:e6. 10.2196/ijmr.9182CrossRefGoogle Scholar
  36. 36.
    Luberto CM, Hyland KA, Streck JM, Temel B, Park ER (2016) Stigmatic and sympathetic attitudes toward cancer patients who smoke: a qualitative analysis of an online discussion board forum. Nicotine Tob Res 18:2194–2201CrossRefGoogle Scholar
  37. 37.
    Grundy Q, Chiu K, Held F, Continella A, Bero L, Holz R (2019) Data sharing practices of medicines related apps and the mobile ecosystem: traffic, content, and network analysis. BMJ 364:l920.  https://doi.org/10.1136/bmj.l920 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Ebeling MFE (2016) Healthcare and big data. Palgrave Macmillan, London, New YorkCrossRefGoogle Scholar
  39. 39.
    Schmidt-Semisch H, Urban M (2016) Von der leiblichen zur virtuellen Gesundheit: Die Nutzung von mHealth durch Krankenversicherungen. Forum Wiss 2:56–59Google Scholar
  40. 40.
    Urban M (2019) Digitales Altern. Zum Zusammenhang zwischen Alter(n)sbildern, digitalen Kompetenzen und Ungleichheit. In: Heitkamp B, Kergel D (Hrsg) Digital Diversity – Bildung und Lernen im Kontext gesellschaftlicher Transformationen. Springer VS, Wiesbaden, S 215–241CrossRefGoogle Scholar
  41. 41.
    Rich AS, Gureckis TM (2019) Lessons for artificial intelligence from the study of natural stupidity. Nat Mach Intell 1:174–180CrossRefGoogle Scholar
  42. 42.
    Longo J, Kuras E, Smith H, Hondula DM, Johnston E (2017) Technology use, exposure to natural hazards, and being digitally invisible: implications for policy analytics. Policy Internet 9:76–108CrossRefGoogle Scholar
  43. 43.
    Mah A (2017) Environmental justice in the age of big data: challenging toxic blind spots of voice, speed, and expertise. Environ Sociol 3:122–133CrossRefGoogle Scholar
  44. 44.
    Yu DX, Parmanto B, Dicianno BE, Watzlaf VJ, Seelman KD (2017) Accessibility needs and challenges of a mHealth system for patients with dexterity impairments. Disabil Rehabil Assist Technol 12:56–64CrossRefGoogle Scholar
  45. 45.
    Samerski S, Müller H (2019) Digitale Gesundheitskompetenz in Deutschland – gefordert, aber nicht gefördert? Ergebnisse der empirischen Studie TK-DiSK. Z Evid Fortbild Qual Gesundhwes.  https://doi.org/10.1016/j.zefq.2019.05.006 CrossRefPubMedGoogle Scholar
  46. 46.
    Lorenc T, Petticrew M, Welch V, Tugwell P (2013) What types of interventions generate inequalities? Evidence from systematic reviews. J Epidemiol Community Health 67:190–193CrossRefGoogle Scholar
  47. 47.
    Veinot TC, Mitchell H, Ancker JS (2018) Good intentions are not enough: how informatics interventions can worsen inequality. J Am Med Inform Assoc 25:1080–1088CrossRefGoogle Scholar
  48. 48.
    Clark MI, Mcgannon KR, Berry TR, Norris CM, Rodgers WM, Spence JC (2018) Taking a hard look at the heart truth campaign in Canada: a discourse analysis. J Health Psychol 23:1699–1710CrossRefGoogle Scholar
  49. 49.
    Unertl KM, Schaefbauer CL, Campbell TR et al (2016) Integrating community-based participatory research and informatics approaches to improve the engagement and health of underserved populations. J Am Med Inform Assoc 23:60–73CrossRefGoogle Scholar
  50. 50.
    Waycott J, Vines J (2019) Designing technologies with older adults: ethical tensions and opportunities. In: Barbosa Neves B, Vetere F (Hrsg) Ageing and digital technology. Designing and evaluating technologies for older adults. Springer, Singapore, S 173–188CrossRefGoogle Scholar
  51. 51.
    Gigerenzer G, Matthes-Schlegel K, Wagner GG (2016) eHealth und mHealth – Chancen und Risiken der Digitalisierung im Gesundheitsbereich. In: Bundesministerium der Justiz und für Verbraucherschutz, Berlin. https://www.bmjv.de/SharedDocs/Downloads/DE/News/Artikel/01192016_Digitale_Welt_und_Gesundheit.html;jsessionid=9400E520F609D15DFE8A8D03E4C97F63.2_cid289. Zugegriffen: 19. Sept. 2019

Copyright information

© Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2020

Authors and Affiliations

  1. 1.Fachbereich 11, Institut für Public Health und PflegeforschungUniversität BremenBremenDeutschland
  2. 2.Leibniz Science Campus Bremen Digital Public HealthBremenDeutschland

Personalised recommendations