Advertisement

Fortschritte in der Cannabis-Forschung aus pharmazeutisch-chemischer Sicht

  • Christa E. MüllerEmail author
Leitthema

Zusammenfassung

Zubereitungen aus der Hanfpflanze Cannabis sativa werden seit Jahrtausenden als Genussdrogen und Arzneimittel eingesetzt. Die wichtigsten Inhaltsstoffe sind das psychoaktive (−)‑trans-∆9-Tetrahydrocannabinol (THC), das als Partialagonist an den Cannabinoid (CB)-Rezeptoren CB1 und CB2 fungiert, und das nicht psychoaktive, pleiotrop wirkende Cannabidiol (CBD). Beide Verbindungen sind hoch lipophil wie die endogenen CB-Rezeptor-Agonisten, die Arachidonsäure-Derivate Anandamid und Arachidonoylglycerol. Die CB-Rezeptoren gehören zur Familie der G‑Protein-gekoppelten Rezeptoren und in den letzten Jahren konnten die ersten Röntgenstrukturen beider Rezeptor-Subtypen erhalten werden, die das rationale Design neuer synthetischer Liganden erleichtern werden. Neben den bereits weitgehend etablierten Indikationen wie chronischer Schmerz, Chemotherapie-induziertem Erbrechen, Spasmen bei multipler Sklerose und Kachexie gibt es Hinweise auf eine Reihe weiterer Cannabinoid-Wirkungen, die noch durch klinische Studien bestätigt werden müssen.

Schlüsselwörter

Cannabidiol Cannabinoide Cannabinoid-Rezeptoren Endocannabinoide Tetrahydrocannabinol 

Progress in cannabis research from a pharmaceutical chemist’s point of view

Abstract

Preparations of hemp, Cannabis sativa, have been used for thousands of years as recreational and therapeutic drugs. The most important constituents are the psychoactive (−)-trans-∆9-tetrahydrocannabinol (THC), a partial agonist at cannabinoid (CB) receptors CB1 and CB2, and the non-psychoactive pleiotropic cannabidiol (CBD). Both compounds are highly lipophilic, like the endogenous CB receptor agonists, the arachidonic acid derivatives anandamide and arachidonoyl glycerol. The CB receptors belong to the family of G protein-coupled receptors, and the first X‑ray crystal structures of both CB receptors subtypes have recently been obtained, which will facilitate the rational design of novel synthetic ligands. Besides the already largely established indications such as chronic pain, chemotherapy-induced vomiting, multiple sclerosis-associated spasms, and cachexia, there is preliminary evidence for several further cannabinoid effects, which will have to be confirmed by clinical studies.

Keywords

Cannabidiol Cannabinoids Cannabinoid receptors Endocannabinoids Tetrahydrocannabinol 

Notes

Danksagung

Unsere Forschungsarbeiten auf dem Gebiet der CB-Rezeptoren und Cannabinoid-aktivierten G‑Protein-gekoppelten Rezeptoren werden durch die Deutsche Forschungsgemeinschaft im Rahmen des Graduiertenkollegs GRK1873 gefördert.

Einhaltung ethischer Richtlinien

Interessenkonflikt

C.E. Müller gibt an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Literatur

  1. 1.
    Pisanti S, Bifulco M (2019) Medical cannabis: a plurimillennial history of an evergreen. J Cell Physiol 234:8342–8351CrossRefPubMedGoogle Scholar
  2. 2.
    Banister SD, Arnold JC, Connor M, Glass M, McGregor IS (2019) Dark classics in chemical neuroscience: delta(9)-Tetrahydrocannabinol. ACS Chem Neurosci 10:2160–2173CrossRefPubMedGoogle Scholar
  3. 3.
    Pertwee RG, Howlett AC, Abood ME et al (2010) International union of basic and clinical pharmacology. LXXIX. Cannabinoid receptors and their ligands: beyond CB1 and CB2. Pharmacol Rev 62:588–631CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Hua T, Vemuri K, Nikas SP et al (2017) Crystal structures of agonist-bound human cannabinoid receptor CB1. Nature 547:468–471CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Kumar KK, Shalev-Benami M, Robertson MJ et al (2019) Structure of a signaling Cannabinoid receptor 1‑G protein complex. Cell 176:448–458.e412CrossRefGoogle Scholar
  6. 6.
    Li X, Hua T, Vemuri K et al (2019) Crystal structure of the human Cannabinoid receptor CB2. Cell 176:459–467.e413CrossRefPubMedGoogle Scholar
  7. 7.
    Ibeas Bih C, Chen T, Nunn AV, Bazelot M, Dallas M, Whalley BJ (2015) Molecular targets of Cannabidiol in neurological disorders. Neurotherapeutics 12:699–730CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Flegel C, Vogel F, Hofreuter A et al (2016) Characterization of non-olfactory GPCRs in human sperm with a focus on GPR18. Sci Rep 6:32255CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Finlay DB, Joseph WR, Grimsey NL, Glass M (2016) GPR18 undergoes a high degree of constitutive trafficking but is unresponsive to N‑Arachidonoyl Glycine. PeerJ 4:e1835CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Chiang N, Dalli J, Colas RA, Serhan CN (2015) Identification of resolvin D2 receptor mediating resolution of infections and organ protection. J Exp Med 212:1203–1217CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Cohen K, Weizman A, Weinstein A (2019) Positive and negative effects of cannabis and Cannabinoids on health. Clin Pharmacol Ther 105:1139–1147CrossRefPubMedGoogle Scholar
  12. 12.
    Klumpers LE, Thacker DL (2019) A brief background on cannabis: from plant to medical indications. AOAC 102:412–420CrossRefGoogle Scholar
  13. 13.
    Whan LB, West MC, McClure N, Lewis SE (2006) Effects of delta-9-tetrahydrocannabinol, the primary psychoactive cannabinoid in marijuana, on human sperm function in vitro. Fertil Steril 85:653–660CrossRefPubMedGoogle Scholar
  14. 14.
    Krebs MO, Kebir O, Jay TM (2019) Exposure to cannabinoids can lead to persistent cognitive and psychiatric disorders. Eur J Pain.  https://doi.org/10.1002/ejp.1377 (in press)CrossRefPubMedGoogle Scholar
  15. 15.
    Gobbi G, Atkin T, Zytynski T et al (2019) Association of cannabis use in adolescence and risk of depression, anxiety, and suicidality in young adulthood: a systematic review and meta-analysis. JAMA Psychiatry.  https://doi.org/10.1001/jamapsychiatry.2018.4500 (in press)CrossRefPubMedGoogle Scholar
  16. 16.
    Scott JC, Slomiak ST, Jones JD et al (2018) Association of cannabis with cognitive functioning in adolescents and young adults: a systematic review and meta-analysis. JAMA Psychiatry 75:585–595CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Gorey C, Kuhns L, Smaragdi E et al (2019) Age-related differences in the impact of cannabis use on the brain and cognition: a systematic review. Eur Arch Psychiatry Clin Neurosci 269:37–58CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Bilkei-Gorzo A, Albayram O, Draffehn A et al (2017) A chronic low dose of Delta(9)-tetrahydrocannabinol (THC) restores cognitive function in old mice. Nat Med 23:782–787CrossRefPubMedGoogle Scholar
  19. 19.
    Gertsch J, Leonti M, Raduner S et al (2008) Beta-caryophyllene is a dietary cannabinoid. Proc Nat Acad Sci USA 105:9099–9104CrossRefPubMedGoogle Scholar
  20. 20.
    Rempel V, Fuchs A, Hinz S et al (2013) Magnolia extract, Magnolol, and metabolites: activation of Cannabinoid CB2 receptors and blockade of the related GPR55. Acs Med Chem Lett 4:41–45CrossRefPubMedGoogle Scholar
  21. 21.
    Fuchs A, Rempel V, Müller CE (2013) The natural product magnolol as a lead structure for the development of potent cannabinoid receptor agonists. PLoS ONE 8:e77739CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Rempel V, Volz N, Hinz S (2012) 7‑Alkyl-3-benzylcoumarins: a versatile scaffold for the development of potent and selective cannabinoid receptor agonists and antagonists. J Med Chem 55:7967–7977CrossRefPubMedGoogle Scholar
  23. 23.
    Hess C, Schoeder CT, Pillaiyar T, Madea B, Müller CE (2016) Pharmacological evaluation of synthetic cannabinoids identified as constituents of spice. Forensic Toxicol 34:329–343CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Pintori N, Loi B, Mereu M (2017) Synthetic cannabinoids: the hidden side of spice drugs. Behav Pharmacol 28:409–419CrossRefPubMedGoogle Scholar
  25. 25.
    Angerer V, Mogler L, Steitz JP et al (2018) Structural characterization and pharmacological evaluation of the new synthetic cannabinoid CUMYL-PEGACLONE. Drug Test Anal 10:597–603CrossRefPubMedGoogle Scholar
  26. 26.
    Schoeder CT, Hess C, Madea B, Meiler J, Müller CE (2018) Pharmacological evaluation of new constituents of “Spice”: synthetic cannabinoids based on indole, indazole, benzimidazole and carbazole scaffolds. Forensic Toxicol 36:385–403CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Adams AJ, Banister SD, Irizarry L, Trecki J, Schwartz M, Gerona R (2017) “Zombie” outbreak caused by the synthetic Cannabinoid AMB-FUBINACA in new York. N Engl J Med 376:235–242CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2019

Authors and Affiliations

  1. 1.Pharmazeutisches Institut, Pharmazeutische Chemie IUniversität BonnBonnDeutschland
  2. 2.Pharma-Zentrum Bonn (PZB)Universität BonnBonnDeutschland

Personalised recommendations