Advertisement

Aufdeckung von Arzneimittelrisiken nach der Zulassung

Methodenentwicklung zur Nutzung von Routinedaten der gesetzlichen Krankenversicherungen
  • Ronja ForaitaEmail author
  • Louis Dijkstra
  • Felix Falkenberg
  • Marco Garling
  • Roland Linder
  • René Pflock
  • Mariam R. Rizkallah
  • Markus Schwaninger
  • Marvin N. Wright
  • Iris Pigeot
Leitthema
  • 271 Downloads

Zusammenfassung

Unerwünschte Arzneimittelwirkungen zählen zu den häufigen Todesursachen. Aufgabe der Pharmakovigilanz ist es, Arzneimittel nach der Zulassung zu überwachen, um so mögliche Risiken aufzudecken. Zu diesem Zweck werden typischerweise Spontanmelderegister genutzt, an die u. a. Ärzte und pharmazeutische Industrie Berichte über unerwünschte Arzneimittelwirkungen (UAW) melden. Diese Register sind jedoch nur begrenzt geeignet, um potenzielle Sicherheitsrisiken zu identifizieren. Eine andere, möglicherweise informativere Datenquelle sind Abrechnungsdaten der gesetzlichen Krankenversicherungen (GKV), die nicht nur den Gesundheitszustand eines Patienten im Längsschnitt erfassen, sondern auch Informationen zu Begleitmedikationen und Komorbiditäten bereitstellen.

Um deren Potenzial nutzen zu können und so zur Verbesserung der Arzneimittelsicherheit beizutragen, sollen statistische Methoden weiterentwickelt werden, die sich in anderen Anwendungsgebieten bewährt haben. So steht eine große Bandbreite von Methoden für die Auswertung von Spontanmeldedaten zur Verfügung: Diese sollen zunächst umfassend verglichen und anschließend hinsichtlich ihrer Nutzbarkeit für longitudinale Daten erschlossen werden. Des Weiteren wird aufgezeigt, wie maschinelle Lernverfahren helfen könnten, seltene Risiken zu identifizieren. Zudem werden sogenannte Enrichment-Analysen eingesetzt, mit denen pharmakologische Arzneimittelgruppen und verwandte Komorbiditäten zusammengefasst werden können, um vulnerable Bevölkerungsgruppen zu identifizieren.

Insgesamt werden diese Methoden die Arzneimittelrisikoforschung anhand von GKV-Routinedaten vorantreiben, die aufgrund ihres Umfangs, der longitudinalen Erfassung sowie ihrer Aktualität eine vielversprechende Datenquelle bieten, um UAWs aufzudecken.

Schlüsselwörter

Unerwünschte Arzneimittelwirkungen Patientensicherheit GKV-Abrechnungsdaten Signalerkennung Spontanmelderegister 

Detection of drug risks after approval

Methods development for the use of routine statutory health insurance data

Abstract

Adverse drug reactions are among the leading causes of death. Pharmacovigilance aims to monitor drugs after they have been released to the market in order to detect potential risks. Data sources commonly used to this end are spontaneous reports sent in by doctors or pharmaceutical companies. Reports alone are rather limited when it comes to detecting potential health risks. Routine statutory health insurance data, however, are a richer source since they not only provide a detailed picture of the patients’ wellbeing over time, but also contain information on concomitant medication and comorbidities.

To take advantage of their potential and to increase drug safety, we will further develop statistical methods that have shown their merit in other fields as a source of inspiration. A plethora of methods have been proposed over the years for spontaneous reporting data: a comprehensive comparison of these methods and their potential use for longitudinal data should be explored. In addition, we show how methods from machine learning could aid in identifying rare risks. We discuss these so-called enrichment analyses and how utilizing pharmaceutical similarities between drugs and similarities between comorbidities could help to construct risk profiles of the patients prone to experience an adverse drug event.

Summarizing these methods will further push drug safety research based on healthcare claim data from German health insurances which form, due to their size, longitudinal coverage, and timeliness, an excellent basis for investigating adverse effects of drugs.

Keywords

Drug-related side effects and adverse reactions Patient safety Health claim data Signal detection Adverse drug reaction reporting systems 

Notes

Danksagung

Dieser Artikel entstand als Teil des Projekts „Nutzung von Routinedaten zur Pharmakovigilanz in Deutschland: Methodenentwicklung und erste Anwendungen“, kurz PV-Monitor, das im Rahmen des Innovationsfonds des Gemeinsamen Bundesausschusses unter dem Förderkennzeichen 01VSF16020 gefördert wird.

Einhaltung ethischer Richtlinien

Interessenkonflikt

R. Foraita, L. Dijkstra, F. Falkenberg, M. Garling, R. Linder, R. Pflock, M. R. Rizkallah, M. Schwaninger, M. N. Wright und I. Pigeot geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Literatur

  1. 1.
    Lazarou J, Pomeranz BH, Corey PN (1998) Incidence of adverse drug reactions in hos-pitalized patients: a meta-analysis of prospective studies. JAMA 279:1200–1205CrossRefPubMedGoogle Scholar
  2. 2.
    European Commission (2008) Proposal for a regulation amending, as regards pharmacovigilance of medicinal products for human use. Regulation (EC) No 726/2004. http://ec.europa.eu/health/files/pharmacos/pharmpack_12_2008/pharmacovigilance-ia-vol1_en.pdf. Zugegriffen: 12. Jan. 2018Google Scholar
  3. 3.
    Oscanoa TJ, Lizaraso F, Carvajal A (2017) Hospital admissions due to adverse drug reactions in the elderly. A meta-analysis. Eur J Clin Pharmacol 73:759–770CrossRefPubMedGoogle Scholar
  4. 4.
    Bouvy JC, De Bruin ML, Koopmanschap MA (2015) Epidemiology of adverse drug reactions in Europe: a review of recent observational studies. Drug Saf 38:437–453CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Stausberg J, Hasford J (2011) Drug-related admissions and hospital-acquired adverse drug events in Germany: a longitudinal analysis from 2003 to 2007 of ICD-10-coded routine data. BMC Health Serv Res 11:134CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Graham DJ, Campen D, Hui R et al (2005) Risk of acute myocardial infarction and sudden cardiac death in patients treated with cyclo-oxygenase 2 selective and non-selective non-steroidal anti-inflammatory drugs: nested case-control study. Lancet 365:475–481CrossRefPubMedGoogle Scholar
  7. 7.
    Sawicki PT, Bender R, Selke GW, Klauber J, Gutschmidt S (2006) Assessment of the number of cardio- and cerebrovascular events due to rofecoxib (Vioxx) in Germany between 2001 and 2004. Med Klin (Munich) 101:191–197CrossRefGoogle Scholar
  8. 8.
    Bundesärztekammer (2015) (Muster‑)Berufsordnung für die in Deutschland tätigen Ärztinnen und Ärzte in der Fassung des Beschlusses des 118. Deutschen Ärztetages 2015 in Frankfurt am Main. Dtsch Arztebl Int 112:1348 ((A3, § 6))Google Scholar
  9. 9.
    Arzneimittelkommission der deutschen Ärzteschaft (2016) Was geschieht mit den Meldungen an die AkdÄ? https://www.akdae.de/Arzneimittelsicherheit/UAW-Meldung/Info/UAW-Meldung-Analyse.html. Zugegriffen: 26. Jan. 2018Google Scholar
  10. 10.
    European Medicines Agency (2012) Europäische Datenbank gemeldeter Verdachtsfälle von Arzneimittelnebenwirkungen: Hintergrund. http://www.adrreports.eu/de/background.html. Zugegriffen: 26. Jan. 2018Google Scholar
  11. 11.
    Suling M, Pigeot I (2012) Signal detection and monitoring based on longitudinal healthcare data. Pharmaceutics 4:607–640CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Pigeot I, Windeler J (2005) Klinische Prüfung nach der Zulassung. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 48:580–585CrossRefPubMedGoogle Scholar
  13. 13.
    Stephenson WP, Hauben M (2007) Data mining for signals in spontaneous reporting databases: proceed with caution. Pharmacoepidemiol Drug Saf 16:359–365CrossRefPubMedGoogle Scholar
  14. 14.
    Goldman S (1998) Limitations and strengths of spontaneous reports data. Clin Ther 20(Suppl C):C40–C44CrossRefPubMedGoogle Scholar
  15. 15.
    Bates D, Evans R, Murff H, Stetson P, Pizziferri L, Hripcsak G (2003) Detecting adverse events using information technology. J Am Med Inform Assoc 10:115–128CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Harpaz R, DuMouchel W, Shah N, Madigan D, Ryan P, Friedman C (2012) Novel data-mining methodologies for adverse drug event discovery and analysis. Clin Pharmacol Ther 91:1010–1021CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Garbe E, Pigeot I (2015) Der Nutzen großer Gesundheitsdatenbanken für die Arzneimittelrisikoforschung. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 58:829–837CrossRefPubMedGoogle Scholar
  18. 18.
    Pigeot I, Ahrens W (2008) Establishment of a pharmacoepidemiological database in Germany: methodological potential, scientific value and practical limitations. Pharmaco-epidemiol. Drug Saf 17:215–223Google Scholar
  19. 19.
    Van Puijenbroek EP, Bate A, Leufkens HGM, Lindquist M, Orre R, Egberts ACG (2002) A comparison of measures of disproportionality for signal detection in spontaneous reporting systems for adverse drug reactions. Pharmacoepidemiol Drug Saf 11:3–10CrossRefPubMedGoogle Scholar
  20. 20.
    DuMouchel W (1999) Bayesian data mining in large frequency tables, with an application to the FDA spontaneous reporting system. Am Stat 53:177–190Google Scholar
  21. 21.
    Bate A, Lindquist M, Edwards IR et al (1998) A Bayesian neural network method for adverse drug reaction signal generation. Eur J Clin Pharmacol 54:315–321CrossRefPubMedGoogle Scholar
  22. 22.
    Norén GN, Bate A, Orre R, Edwards IR (2006) Extending the methods used to screen the WHO drug safety database towards analysis of complex associations and improved accuracy for rare events. Stat Med 25:3740–3757CrossRefPubMedGoogle Scholar
  23. 23.
    Ahmed I, Dalmasso C, Haramburu F, Thiessard F, Broët P, Tubert-Bitter P (2010) False discovery rate estimation for frequentist pharmacovigilance signal detection methods. Biometrics 66:301–309CrossRefPubMedGoogle Scholar
  24. 24.
    Caster O, Madigan D, Norén GN, Bate A (2008) Large-scale regression-based pattern discovery in international adverse drug reaction surveillance. Proceedings of the KDD-08 Workshop on Mining Medical Data, S 24–27Google Scholar
  25. 25.
    Roux E, Thiessard F, Fourrier A, Be B (2005) Evaluation of statistical association measures for the automatic signal generation in pharmacovigilance. Ieee J Biomed Health Inform 9:518–527Google Scholar
  26. 26.
    Ahmed I, Haramburu F, Fourrier-Réglat A et al (2009) Bayesian pharmacovigilance signal detection methods revisited in a multiple comparison setting. Stat Med 28:1774–1792CrossRefPubMedGoogle Scholar
  27. 27.
    Madigan D, Ryan P, Simpson S, Zorych I (2010) Bayesian methods in pharmacovigilance. Bayesian Stat 9:421–438.  https://doi.org/10.1093/acprof:oso/9780199694587.001.0001 CrossRefGoogle Scholar
  28. 28.
    Mohamed AR, Sainath TN, Dahl G, Ramabhadran B, Hinton GE, Picheny MA (2011) Deep belief networks using discriminative features for phone recognition. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Prague, 2011, S 5060–5063Google Scholar
  29. 29.
    Krizhevsky A, Sutskever I, Hinton GE (2012) ImageNet classification with deep convolutional neural networks. Adv Neural Inf Process Syst 25:1097–1105Google Scholar
  30. 30.
    Linder R (2006) Lernstrategien zur automatisierten Anwendung künstlicher neuronaler Netzwerke in der Medizin. Logos-Verlag, BerlinGoogle Scholar
  31. 31.
    Whitaker HJ, Farrington CP, Spiessens B, Musonda P (2006) Tutorial in biostatistics: The self-controlled case series method. Stat Med 25:1768–1797CrossRefPubMedGoogle Scholar
  32. 32.
    Meyer UA (2000) Pharmacogenetics and adverse drug reactions. Lancet 356:1667–1671CrossRefPubMedGoogle Scholar
  33. 33.
    Phillips KA, Veenstra DL, Oren E, Lee JK, Sadee W (2001) Potential role of pharmacogenomics in reducing adverse drug reactions: a systematic review. JAMA 286:2270–2279CrossRefPubMedGoogle Scholar
  34. 34.
    Rizkallah MR, Saad R, Aziz RK (2010) The Human Microbiome Project, personalized medicine and the birth of pharmacomicrobiomics. Curr Pharmacogenomics Person Med 8:182–193CrossRefGoogle Scholar
  35. 35.
    Alomar MJ (2014) Factors affecting the development of adverse drug reactions. Saudi Pharm J 22:83–94CrossRefPubMedGoogle Scholar
  36. 36.
    Dumbreck S, Flynn A, Nairn M et al (2015) Drug-disease and drug-drug interactions: systematic examination of recommendations in 12 UK national clinical guidelines. BMJ 350:h949CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Stewart D, Gibson-Smith K, MacLure K et al (2017) A modified Delphi study to determine the level of consensus across the European Union on the structures, processes and desired outcomes of the management of polypharmacy in older people. PLoS ONE 12:e188348CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Keiser MJ, Roth BL, Armbruster BN, Ernsberger P, Irwin JJ, Shoichet BK (2007) Relating protein pharmacology by ligand chemistry. Nat Biotechnol 25:197–206CrossRefPubMedGoogle Scholar
  39. 39.
    Lounkine E, Keiser MJ, Whitebread S et al (2012) Large-scale prediction and testing of drug activity on side-effect targets. Nature 486:361–367CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Kanehisa M, Furumichi M, Tanabe M, Sato Y, Morishima K (2017) KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res 45:D353–D361CrossRefPubMedGoogle Scholar
  41. 41.
    Ashburner M, Ball CA, Blake JA et al (2000) Gene ontology: tool for the unification of biology. Nat Genet 25(1):25–29CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Mooney MA, Wilmot B (2015) Gene set analysis: a step-by-step guide. Am J Med Genet B Neuropsychiatr Genet 168:517–527CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Wang Q, Yu H, Zhao Z, Jia P (2015) EW_dmGWAS: edge-weighted dense module search for genome-wide association studies and gene expression profiles. Bioinformatics 31(15):2591–2594.  https://doi.org/10.1093/bioinformatics/btv150 CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Szklarczyk D, Santos A, von Mering C, Jensen LJ, Bork P, Kuhn M (2016) STITCH 5: augmenting protein-chemical interaction networks with tissue and affinity data. Nucleic Acids Res 44:D380–D384CrossRefPubMedGoogle Scholar
  45. 45.
    Li YH, Yu CY, Li XX et al (2018) Therapeutic target database update 2018: enriched resource for facilitating bench-to-clinic research of targeted therapeutics. Nucleic Acids Res 46:D1121–D1127PubMedGoogle Scholar
  46. 46.
    Gaulton A, Hersey A, Nowotka M et al (2017) The ChEMBL database in 2017. Nucleic Acids Res 45:D945–D954CrossRefPubMedGoogle Scholar
  47. 47.
    Lo Y‑C, Torres JZ (2016) Chemical similarity networks for drug discovery. In: Chen T (Hrsg) special topics in drug discovery. Intech. https://www.intechopen.com/books/special-topics-in-drug-discovery/chemical-similarity-networks-for-drug-discovery. Zugegriffen: 30. Jan. 2018CrossRefGoogle Scholar
  48. 48.
    Hude Q, Vijaya S, Patricia H et al (2005) Coding algorithms for defining comorbidities in ICD-9-CM and ICD-10 administrative data. Med Care 43:1130–1139CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2018

Authors and Affiliations

  • Ronja Foraita
    • 1
    Email author
  • Louis Dijkstra
    • 1
  • Felix Falkenberg
    • 2
  • Marco Garling
    • 2
  • Roland Linder
    • 2
  • René Pflock
    • 3
  • Mariam R. Rizkallah
    • 1
  • Markus Schwaninger
    • 3
  • Marvin N. Wright
    • 1
  • Iris Pigeot
    • 1
  1. 1.Leibniz-Institut für Präventionsforschung und Epidemiologie – BIPSBremenDeutschland
  2. 2.Wissenschaftliches Institut der Techniker Krankenkasse für Nutzen und Effizienz im Gesundheitswesen (WINEG TK)HamburgDeutschland
  3. 3.Institut für Experimentelle und Klinische Pharmakologie und ToxikologieUniversität zu LübeckLübeckDeutschland

Personalised recommendations