Skip to main content

Advertisement

Log in

Bedeutung von Klima- und Umweltschutz für die Gesundheit mit besonderer Berücksichtigung von Schädigungen der Hautbarriere und allergischen Folgeerkrankungen

The significance of climate and environment protection for health under special consideration of skin barrier damages and allergic sequelae

  • Leitthema
  • Published:
Bundesgesundheitsblatt - Gesundheitsforschung - Gesundheitsschutz Aims and scope

Zusammenfassung

Die menschliche Haut erfüllt neben der Lunge und dem Darm eine zentrale Barrierefunktion hinsichtlich der Interaktion des Körpers mit der Umwelt. Eine kontinuierliche Exposition gegenüber Umwelteinflüssen kann zu Schädigungen der epithelialen Barriere führen und somit den Weg für die Entwicklung von Atopien bahnen. Letztere bezeichnen die Neigung zu Allergien, d. h. Überempfindlichkeitsreaktionen der Haut, des Darms und der Atemwege auf im Grunde unschädliche Umweltstoffe.

Allergien zählen zu den nichtübertragbaren Krankheiten (NCDs, Non-communicable Diseases). Gemäß der Weltgesundheitsorganisation (WHO) stellen Allergien die aktuell größte medizinische Herausforderung dar. Sie sind die häufigsten und im Lebenslauf am ehesten auftretenden NCDs und zeichnen sich durch einen hohen und vielfältigen Leidensdruck aus. Die Verbreitung von Allergien innerhalb der Bevölkerung nimmt stetig zu, was steigende Fallzahlen belegen. Als Folge davon entstehen hohe sozioökonomische Belastungen und demnach der dringende Bedarf effektiver Präventionsmaßnahmen. Deren Potenzial wird längst nicht effektiv eingesetzt. Die Schlüsselrolle der Hautbarriere bezüglich der Abwehr von Atopien eröffnet zusätzlich neue Möglichkeiten der Prävention. Sie liegen in einer ambitionierten Umwelt- und Klimapolitik begründet, die die Barriere schädigender Umweltfaktoren gezielt adressieren.

Basierend auf dieser Annahme erklärt dieser Artikel, welche umwelt- und klimapolitischen Maßnahmen hierfür geeignet wären. Die zwei primären Argumente für solche Maßnahmen sind sowohl eine Entlastung des Gesundheitswesens als auch eine deutliche Erhöhung der Lebensqualität für die Betroffenen. Sie legitimieren erst eine ambitionierte Umwelt- und Klimapolitik, für deren konkrete Umsetzung eine integrierte Betrachtungsweise von (Allergie‑)Prävention und Umwelt erforderlich ist und für deren Akzeptanz in Politik und Gesellschaft nun dringend geworben werden muss.

Abstract

The skin, together with gut and respiratory tract, harbor a central epithelial barrier function in regards to the interaction of an individual with the environment. Continuing exposure to environmental influences can cause epithelial barrier damages and thus pave the way for atopy development. The latter describes the tendency for allergies, i. e. hypersensitivity of the skin, intestine, and respiratory tract towards per se unharmful environmental substances.

Allergies are classified as non-communicable diseases (NCDs). According to the World Health Organization (WHO), they are presently the most demanding medical challenge. Allergies are the most frequent NCDs and are characterized by a high and multi-facetted level of suffering. An enormous socio-economic burden and the urgent need for effective prevention follows as consequence. Prevention options have by no means been sufficiently used. Within the skin barrier’s key function in regards to the defense of atopic diseases are so far inadequately used prevention possibilities. They are based on ambitious environmental and climatic policy that pointedly addresses the barrier disrupting environmental factors.

On the basis of this proposition, the present article assigns appropriate environmental and climatic policy measures. The two main arguments for such measures are a disburdening of the healthcare system as well as a far better life quality for the affected people. They are the legitimization towards an ambitious environmental and climatic policy. For its realization an integrated approach of (allergy) prevention and environmental research is necessary. Now, campaigning for its acceptance in politics and society is an urgent matter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3

Literatur

  1. Traidl-Hoffmann C (2017) Allergy – an environmental disease. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 60:584–591

    Article  PubMed  Google Scholar 

  2. Schram ME, Tedja AM, Spijker R, Bos JD, Williams HC, Spuls PI (2010) Is there a rural/urban gradient in the prevalence of eczema? A systematic review. Br J Dermatol 162:964–973

    Article  PubMed  CAS  Google Scholar 

  3. Wu W, Jin Y, Carlsten C (2018) Inflammatory health effects of indoor and outdoor particulate matter. J Allergy Clin Immunol 141:833–844

    Article  PubMed  CAS  Google Scholar 

  4. Demain JG (2018) Climate change and the impact on respiratory and allergic disease: 2018. Curr Allergy Asthma Rep 18:22

    Article  PubMed  Google Scholar 

  5. Cecchi L, D’Amato G, Annesi-Maesano I (2018) External exposome and allergic respiratory and skin diseases. J Allergy Clin Immunol 141:846–857

    Article  PubMed  Google Scholar 

  6. Ding A, Yang Y, Zhao Z et al (2017) Indoor PM2.5 exposure affects skin aging manifestation in a Chinese population. Sci Rep 7:15329

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Heede NG, Thuesen BH, Thyssen JP et al (2017) Hand eczema, atopic dermatitis and filaggrin mutations in adult Danes: a registry-based study assessing risk of disability pension. Contact Derm 77:95–105

    Article  PubMed  CAS  Google Scholar 

  8. Heede NG, Thyssen JP, Thuesen BH et al (2017) Health-related quality of life in adult dermatitis patients stratified by filaggrin genotype. Contact Derm 76:167–177

    Article  PubMed  CAS  Google Scholar 

  9. Prunicki M, Stell L, Dinakarpandian D et al (2018) Exposure to NO2, CO, and PM2.5 is linked to regional DNA methylation differences in asthma. Clin Epigenetics 10:2

    Article  PubMed  PubMed Central  Google Scholar 

  10. Nadeau K, McDonald-Hyman C, Noth EM et al (2010) Ambient air pollution impairs regulatory T‑cell function in asthma. J Allergy Clin Immunol 126:845–852.e10

    Article  PubMed  CAS  Google Scholar 

  11. Eyerich K, Eyerich S (2018) Immune response patterns in non-communicable inflammatory skin diseases. J Eur Acad Dermatol Venereol 32(5):692. https://doi.org/10.1111/jdv.14673

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Ring J, Akdis C, Behrendt H et al (2012) Davos declaration: allergy as a global problem. Allergy 67:141–143

    Article  PubMed  CAS  Google Scholar 

  13. Bieber T, Akdis C, Lauener R et al (2016) Global allergy forum and 3rd Davos declaration 2015: atopic dermatitis/eczema: challenges and opportunities toward precision medicine. Allergy 71:588–592

    Article  PubMed  CAS  Google Scholar 

  14. Ring J, Akdis C, Lauener R et al (2014) Global allergy forum and second Davos declaration 2013 allergy: barriers to cure-challenges and actions to be taken. Allergy 69:978–982

    Article  PubMed  CAS  Google Scholar 

  15. Lambrecht BN, Hammad H (2017) The immunology of the allergy epidemic and the hygiene hypothesis. Nat Immunol 18:1076–1083

    Article  PubMed  CAS  Google Scholar 

  16. Zuberbier T, Lotvall J, Simoens S, Subramanian S, Church MK (2014) Economic burden of inadequate management of allergic diseases in the European Union: a GA(2)LEN review. Allergy 69(10):1275. https://doi.org/10.1111/all.12470

    Article  PubMed  CAS  Google Scholar 

  17. Ring J, Kramer U, Schafer T, Behrendt H (2001) Why are allergies increasing? Curr Opin Immunol 13:701–708

    Article  PubMed  CAS  Google Scholar 

  18. Traidl-Hoffmann C, Treudler R, Pryzbilla B, Kapp A, Zuberbier T, Werfel T (2014) The working group on allergology in the DDG. J Dtsch Dermatol Ges 12(Suppl 4):46–48

    Article  PubMed  Google Scholar 

  19. Eyerich S, Eyerich K, Traidl-Hoffmann C, Biedermann T (2018) Cutaneous barriers and skin immunity: differentiating a connected network. Trends Immunol 39:315–327

    Article  PubMed  CAS  Google Scholar 

  20. von Mutius E (2016) The microbial environment and its influence on asthma prevention in early life. J Allergy Clin Immunol 137:680–689

    Article  Google Scholar 

  21. Werfel T, Allam JP, Biedermann T et al (2016) Cellular and molecular immunologic mechanisms in patients with atopic dermatitis. J Allergy Clin Immunol 138:336–349

    Article  PubMed  CAS  Google Scholar 

  22. Wesemann DR, Nagler CR (2016) The microbiome, timing, and barrier function in the context of allergic disease. Immunity 44:728–738

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Iwase T, Uehara Y, Shinji H et al (2010) Staphylococcus epidermidis Esp inhibits Staphylococcus aureus biofilm formation and nasal colonization. Nature 465:346–349

    Article  PubMed  CAS  Google Scholar 

  24. Nakatsuji T, Chen TH, Narala S et al (2017) Antimicrobials from human skin commensal bacteria protect against Staphylococcus aureus and are deficient in atopic dermatitis. Sci Transl Med 9(378):eaah4680. https://doi.org/10.1126/scitranslmed.aah4680

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Schade H, Marchionini A (1928) Der Säuremantel der Haut (Nach Gaskettenmessungen). Klin Wochenschr 7:12

    Article  CAS  Google Scholar 

  26. Blume C, Foerster S, Gilles S et al (2009) Human epithelial cells of the respiratory tract and the skin differentially internalize grass pollen allergens. J Invest Dermatol 129:1935–1944

    Article  PubMed  CAS  Google Scholar 

  27. Blume C, Swindle EJ, Dennison P et al (2013) Barrier responses of human bronchial epithelial cells to grass pollen exposure. Eur Respir J 42:87–97

    Article  PubMed  CAS  Google Scholar 

  28. Yuki T, Yoshida H, Akazawa Y, Komiya A, Sugiyama Y, Inoue S (2011) Activation of TLR2 enhances tight junction barrier in epidermal keratinocytes. J Immunol 187:3230–3237

    Article  PubMed  CAS  Google Scholar 

  29. Basler K, Galliano MF, Bergmann S et al (2017) Biphasic influence of Staphylococcus aureus on human epidermal tight junctions. Ann N Y Acad Sci 1405:53–70

    Article  PubMed  CAS  Google Scholar 

  30. Altunbulakli C, Costa R, Lan F et al (2018) Staphylococcus aureus enhances the tight junction barrier integrity in healthy nasal tissue, but not in nasal polyps. J Allergy Clin Immunol. https://doi.org/10.1016/j.jaci.2018.01.046

    Article  PubMed  Google Scholar 

  31. Van Crombruggen K, Vogl T, Perez-Novo C, Holtappels G, Bachert C (2016) Differential release and deposition of S100A8/A9 proteins in inflamed upper airway tissue. Eur Respir J 47:264–274

    Article  PubMed  CAS  Google Scholar 

  32. Eyerich S, Wagener J, Wenzel V et al (2011) IL-22 and TNF-alpha represent a key cytokine combination for epidermal integrity during infection with Candida albicans. Eur J Immunol 41:1894–1901

    Article  PubMed  CAS  Google Scholar 

  33. Simpson EL, Villarreal M, Jepson B et al (2018) Atopic dermatitis subjects colonized with staphylococcus aureus have a distinct phenotype and endotype. J Invest Dermatol. https://doi.org/10.1016/j.jid.2018.03.1517

    Article  PubMed Central  PubMed  Google Scholar 

  34. Johansson SG, Hourihane JO, Bousquet J et al (2001) A revised nomenclature for allergy. An EAACI position statement from the EAACI nomenclature task force. Allergy 56:813–824

    Article  PubMed  CAS  Google Scholar 

  35. Traidl-Hoffmann C, Jakob T, Behrendt H (2009) Determinants of allergenicity. J Allergy Clin Immunol 123:558–566

    Article  PubMed  CAS  Google Scholar 

  36. Spergel JM, Paller AS (2003) Atopic dermatitis and the atopic march. J Allergy Clin Immunol 112:S118–S127

    Article  PubMed  Google Scholar 

  37. Marenholz I, Esparza-Gordillo J, Ruschendorf F et al (2015) Meta-analysis identifies seven susceptibility loci involved in the atopic march. Nat Commun 6:8804

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. D’Amato G, Vitale C, Lanza M, Molino A, D’Amato M (2016) Climate change, air pollution, and allergic respiratory diseases: an update. Curr Opin Allergy Clin Immunol 16:434–440

    Article  PubMed  CAS  Google Scholar 

  39. D’Amato G, Pawankar R, Vitale C et al (2016) Climate change and air pollution: effects on respiratory allergy. Allergy Asthma Immunol Res 8:391–395

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. D’Amato G, Holgate ST, Pawankar R et al (2015) Meteorological conditions, climate change, new emerging factors, and asthma and related allergic disorders. A statement of the World Allergy Organization. World Allergy Organ J 8:25

    Article  PubMed  Google Scholar 

  41. D’Amato G, Liccardi G, D’Amato M, Cazzola M (2001) The role of outdoor air pollution and climatic changes on the rising trends in respiratory allergy. Respir Med 95:606–611

    Article  PubMed  Google Scholar 

  42. Kramer U, Oppermann H, Ranft U, Schafer T, Ring J, Behrendt H (2010) Differences in allergy trends between East and West Germany and possible explanations. Clin Exp Allergy 40:289–298

    Article  PubMed  CAS  Google Scholar 

  43. Lehmann I (2017) Environmental pollutants as adjuvant factors of immune system derived diseases. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 60:592–596

    Article  PubMed  Google Scholar 

  44. Stemmler S, Parwez Q, Petrasch-Parwez E, Epplen JT, Hoffjan S (2014) Association of variation in the LAMA3 gene, encoding the alpha-chain of laminin 5, with atopic dermatitis in a German case-control cohort. BMC Dermatol 14:17

    Article  PubMed  PubMed Central  Google Scholar 

  45. Stemmler S, Nothnagel M, Parwez Q, Petrasch-Parwez E, Epplen JT, Hoffjan S (2009) Variation in genes of the epidermal differentiation complex in German atopic dermatitis patients. Int J Immunogenet 36:217–222

    Article  PubMed  CAS  Google Scholar 

  46. Irvine AD, McLean WH, Leung DY (2011) Filaggrin mutations associated with skin and allergic diseases. N Engl J Med 365:1315–1327

    Article  PubMed  CAS  Google Scholar 

  47. Filipiak-Pittroff B, Schnopp C, Berdel D et al (2011) Predictive value of food sensitization and filaggrin mutations in children with eczema. J Allergy Clin Immunol 128:1235–1241.e5

    Article  PubMed  CAS  Google Scholar 

  48. Yang IV, Lozupone CA, Schwartz DA (2017) The environment, epigenome, and asthma. J Allergy Clin Immunol 140:14–23

    Article  PubMed  PubMed Central  Google Scholar 

  49. D’Amato G, Bergmann KC, Cecchi L et al (2014) Climate change and air pollution: effects on pollen allergy and other allergic respiratory diseases. Allergo J Int 23:17–23

    Article  PubMed  PubMed Central  Google Scholar 

  50. Alessandrini F, Schulz H, Takenaka S et al (2006) Effects of ultrafine carbon particle inhalation on allergic inflammation of the lung. J Allergy Clin Immunol 117:824–830

    Article  PubMed  CAS  Google Scholar 

  51. Schaumann F, Fromke C, Dijkstra D et al (2014) Effects of ultrafine particles on the allergic inflammation in the lung of asthmatics: results of a double-blinded randomized cross-over clinical pilot study. Part Fibre Toxicol 11:39

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Fuertes E, Standl M, Forns J et al (2016) Traffic-related air pollution and hyperactivity/inattention, dyslexia and dyscalculia in adolescents of the German GINIplus and LISAplus birth cohorts. Environ Int 97:85–92

    Article  PubMed  CAS  Google Scholar 

  53. Morgenstern V, Zutavern A, Cyrys J et al (2008) Atopic diseases, allergic sensitization, and exposure to traffic-related air pollution in children. Am J Respir Crit Care Med 177:1331–1337

    Article  PubMed  Google Scholar 

  54. Hidaka T, Ogawa E, Kobayashi EH et al (2017) The aryl hydrocarbon receptor AhR links atopic dermatitis and air pollution via induction of the neurotrophic factor artemin. Nat Immunol 18:64–73

    Article  PubMed  CAS  Google Scholar 

  55. Beck I, Jochner S, Gilles S et al (2013) High environmental ozone levels lead to enhanced allergenicity of birch pollen. PLoS ONE 8:e80147

    Article  PubMed  PubMed Central  Google Scholar 

  56. Schenk GJ, Juneja M, Wieczorek A, Lind C, Reiss-Engelhorn-Museen (2014) Mensch–Natur–Katastrophe : Von Atlantis bis heute : Begleitband zur Sonderausstellung. Schnell + Steiner ; Rem, Reiss-Engelhorn-Museen, Regensburg Mannheim

    Google Scholar 

  57. Smith M, Jager S, Berger U et al (2014) Geographic and temporal variations in pollen exposure across Europe. Allergy 69:913–923

    Article  PubMed  CAS  Google Scholar 

  58. Sofia G, Emma T, Veronica T, Giuseppe F (2017) Climate change: consequences on the pollination of grasses in Perugia (Central Italy). A 33-year-long study. Int J Biometeorol 61:149–158

    Article  PubMed  Google Scholar 

  59. Ziello C, Sparks TH, Estrella N et al (2012) Changes to airborne pollen counts across Europe. PLoS ONE 7:e34076

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Zhao F, Durner J, Winkler JB et al (2017) Pollen of common ragweed (Ambrosia artemisiifolia L.): illumina-based de novo sequencing and differential transcript expression upon elevated NO2/O3. Environ Pollut 224:503–514

    Article  PubMed  CAS  Google Scholar 

  61. Zhao F, Elkelish A, Durner J et al (2016) Common ragweed (Ambrosia artemisiifolia L.): allergenicity and molecular characterization of pollen after plant exposure to elevated NO2. Plant Cell Environ 39:147–164

    Article  PubMed  CAS  Google Scholar 

  62. Werchan B, Werchan M, Mucke HG et al (2017) Spatial distribution of allergenic pollen through a large metropolitan area. Environ Monit Assess 189:169

    Article  PubMed  Google Scholar 

  63. Rogers CA, Wayne PM, Macklin EA et al (2006) Interaction of the onset of spring and elevated atmospheric CO2 on ragweed (Ambrosia artemisiifolia L.) pollen production. Environ Health Perspect 114:865–869

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Sikoparija B, Skjoth CA, Celenk S et al (2017) Spatial and temporal variations in airborne Ambrosia pollen in Europe. Aerobiologia (Bologna) 33:181–189

    Article  CAS  Google Scholar 

  65. Burbach GJ, Heinzerling LM, Rohnelt C et al (2009) Ragweed sensitization in Europe – GA(2)LEN study suggests increasing prevalence. Allergy 64:664–665

    Article  PubMed  CAS  Google Scholar 

  66. Asero R, Wopfner N, Gruber P, Gadermaier G, Ferreira F (2006) Artemisia and Ambrosia hypersensitivity: co-sensitization or co-recognition? Clin Exp Allergy 36:658–665

    Article  PubMed  CAS  Google Scholar 

  67. Hoflich C, Balakirski G, Hajdu Z et al (2016) Potential health risk of allergenic pollen with climate change associated spreading capacity: ragweed and olive sensitization in two German federal states. Int J Hyg Environ Health 219:252–260

    Article  PubMed  Google Scholar 

  68. Handbuch NeoFlora. https://www.floraweb.de/neoflora/handbuch.html. Zugegriffen: Jan. 2018

  69. Motta AC, Marliere M, Peltre G, Sterenberg PA, Lacroix G (2006) Traffic-related air pollutants induce the release of allergen-containing cytoplasmic granules from grass pollen. Int Arch Allergy Immunol 139:294–298

    Article  PubMed  CAS  Google Scholar 

  70. Behrendt H, Becker WM, Fritzsche C et al (1997) Air pollution and allergy: experimental studies on modulation of allergen release from pollen by air pollutants. Int Arch Allergy Immunol 113:69–74

    Article  PubMed  CAS  Google Scholar 

  71. Ghiani A, Bruschi M, Citterio S et al (2016) Nitration of pollen aeroallergens by nitrate ion in conditions simulating the liquid water phase of atmospheric particles. Sci Total Environ 573:1589–1597

    Article  PubMed  CAS  Google Scholar 

  72. Lang-Yona N, Shuster-Meiseles T, Mazar Y, Yarden O, Rudich Y (2016) Impact of urban air pollution on the allergenicity of Aspergillus fumigatus conidia: outdoor exposure study supported by laboratory experiments. Sci Total Environ 541:365–371

    Article  PubMed  CAS  Google Scholar 

  73. Rogerieux F, Godfrin D, Senechal H et al (2007) Modifications of Phleum pratense grass pollen allergens following artificial exposure to gaseous air pollutants (O(3), NO(2), SO(2)). Int Arch Allergy Immunol 143:127–134

    Article  PubMed  CAS  Google Scholar 

  74. Gilles-Stein S, Beck I, Chaker A et al (2016) Pollen derived low molecular compounds enhance the human allergen specific immune response in vivo. Clin Exp Allergy 46:1355–1365

    Article  PubMed  CAS  Google Scholar 

  75. MacNeill SJ, Sozanska B, Danielewicz H et al (2013) Asthma and allergies: is the farming environment (still) protective in Poland? The GABRIEL Advanced Studies. Allergy 68:771–779

    Article  PubMed  CAS  Google Scholar 

  76. Stein MM, Hrusch CL, Gozdz J et al (2016) Innate immunity and asthma risk in amish and hutterite farm children. N Engl J Med 375:411–421

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Roduit C, Frei R, Loss G et al (2012) Development of atopic dermatitis according to age of onset and association with early-life exposures. J Allergy Clin Immunol 130:130–136e135

    Article  PubMed  Google Scholar 

  78. Hua X, Goedert JJ, Pu A, Yu G, Shi J (2016) Allergy associations with the adult fecal microbiota: analysis of the American Gut Project. EBioMedicine 3:172–179

    Article  PubMed  Google Scholar 

  79. Bersuch E, Graf F, Renner ED et al (2017) Lung function improvement and airways inflammation reduction in asthmatic children after a rehabilitation program at moderate altitude. Pediatr Allergy Immunol 28(8):768. https://doi.org/10.1111/pai.12808

    Article  PubMed  Google Scholar 

  80. Damialis A, Kaimakamis E, Konoglou M, Akritidis I, Traidl-Hoffmann C, Gioulekas D (2017) Estimating the abundance of airborne pollen and fungal spores at variable elevations using an aircraft: how high can they fly? Sci Rep 7:44535

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Fieten K, Schappin R, Zijlstra W et al (2017) Effectiveness of alpine climate treatment for children with difficult to treat atopic dermatitis: results of a pragmatic randomized controlled trial (DAVOS trial). Clin Exp Allergy 48(2):186. https://doi.org/10.1111/cea.13058

    Article  PubMed  Google Scholar 

  82. Lambert KA, Bowatte G, Tham R et al (2017) Residential greenness and allergic respiratory diseases in children and adolescents – a systematic review and meta-analysis. Environ Res 159:212–221

    Article  PubMed  CAS  Google Scholar 

  83. Fuertes E, Markevych I, von Berg A et al (2014) Greenness and allergies: evidence of differential associations in two areas in Germany. J Epidemiol Community Health 68:787–790

    Article  PubMed  PubMed Central  Google Scholar 

  84. Schiavoni G, D’Amato G, Afferni C (2017) The dangerous liaison between pollens and pollution in respiratory allergy. Ann Allergy Asthma Immunol 118:269–275

    Article  PubMed  Google Scholar 

  85. Baumol JW, Wallace OE (1988) The theory of environmental policy, 2. Aufl. Cambridge University Press, Cambridge

    Book  Google Scholar 

  86. Markandya A, Sampedro J, Smith SJ et al (2018) Health co-benefits from air pollution and mitigation costs of the Paris agreement: a modelling study. Lancet Planet Health 2:e126–e133

    Article  PubMed  Google Scholar 

  87. Cai W, Hui J, Wang C et al (2018) The Lancet Countdown on PM2.5 pollution-related health impacts of China’s projected carbon dioxide mitigation in the electric power generation sector under the Paris Agreement: a modelling study. Lancet Planet Health 2:e151–e161

    Article  PubMed  Google Scholar 

  88. Schultz R (2018) Implementation of policies to protect planetary health. Lancet Planet Health 2:e62

    Article  PubMed  Google Scholar 

  89. Michaelis P (1993) Ökonomische Instrumente in der Umweltpolitik – Eine anwendungsorientiert Einführung. Pysica, Heidelberg

    Google Scholar 

  90. Tang X, Misztal PK, Nazaroff WW, Goldstein AH (2016) Volatile organic compound emissions from humans indoors. Environ Sci Technol 50:12686–12694

    Article  PubMed  CAS  Google Scholar 

  91. Wilke O, Jann O, Brodner D (2004) VOC- and SVOC-emissions from adhesives, floor coverings and complete floor structures. Indoor Air 14(Suppl 8):98–107

    Article  PubMed  Google Scholar 

  92. Zhang Z, Yan X, Gao F et al (2018) Emission and health risk assessment of volatile organic compounds in various processes of a petroleum refinery in the Pearl River Delta, China. Environ Pollut 238:452–461

    Article  PubMed  CAS  Google Scholar 

  93. Carinanos P, Casares-Porcel M (2011) Urban green zones and related pollen allergy: a review. Some guidelines for designing spaces with low allergy impact. Landsc Urban Plan 101:205–214

    Article  Google Scholar 

  94. Lewis WH, Zenger VE (1983) Airborne and allergenic pollen of north America. The Johns Hopkins University Press, Baltimore

    Google Scholar 

  95. Jahreis S, Trump S, Bauer M et al (2018) Maternal phthalate exposure promotes allergic airway inflammation over 2 generations through epigenetic modifications. J Allergy Clin Immunol 141:741–753

    Article  PubMed  CAS  Google Scholar 

  96. Schafer T, Bauer CP, Beyer K et al (2014) S3-Guideline on allergy prevention: 2014 update: Guideline of the German Society for Allergology and Clinical Immunology (DGAKI) and the German Society for Pediatric and Adolescent Medicine (DGKJ). Allergo J Int 23:186–199

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Danksagung

Die Autoren bedanken sich bei Herrn Volker Schiller für seine kritische Textkorrektur.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudia Traidl-Hoffmann.

Ethics declarations

Interessenkonflikt

C. Heuson und C. Traidl-Hoffmann geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heuson, C., Traidl-Hoffmann, C. Bedeutung von Klima- und Umweltschutz für die Gesundheit mit besonderer Berücksichtigung von Schädigungen der Hautbarriere und allergischen Folgeerkrankungen. Bundesgesundheitsbl 61, 684–696 (2018). https://doi.org/10.1007/s00103-018-2742-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00103-018-2742-y

Schlüsselwörter

Keywords

Navigation