Skip to main content
Log in

Die Umwelt als Reservoir für Antibiotikaresistenzen

Ein wachsendes Problem für die öffentliche Gesundheit?

The environment as a reservoir for antimicrobial resistance

A growing problem for public health?

  • Leitthema
  • Published:
Bundesgesundheitsblatt - Gesundheitsforschung - Gesundheitsschutz Aims and scope

Zusammenfassung

Antibiotikaresistenz stellt weltweit eine Bedrohung für die Gesundheit von Mensch und Tier dar. Der Ursprung von Antibiotikaresistenzgenen war lange Zeit unbekannt. Heute gibt es eine wachsende Zahl von Belegen, die zeigen, dass Umweltbakterien gegen eine Vielzahl von Antibiotika resistent sind und dass dieses Umweltreservoir antimikrobieller Resistenz (AMR, Antimicrobial Resistance) immer noch wächst. Untersuchungen der Genome pathogener Bakterien zeigen, dass diese Resistenzen über den Einbau verschiedener genetischer Elemente durch horizontalen Gentransfer erworben haben. Die Vorfahren pathogener Bakterien sowie der Ursprung von Resistenzdeterminanten waren höchstwahrscheinlich Bakterien aus der Umwelt. Tatsächlich gibt es Hinweise darauf, dass zumindest einige klinisch relevante Resistenzgene von Bakterienspezies aus der Umwelt stammen. Aus diesem Grund sind umsetzbare Maßnahmen erforderlich, um die potenziellen Risiken der Verbreitung von Antibiotikaresistenzgenen und resistenten Bakterien, die in der Umwelt vorkommen, zu reduzieren. Besonders das Zusammentreffen von Faktoren, wie hohe Mengen an Antibiotika und/oder Schwermetallen und hohe Bakteriendichten, fördern nachweislich die Entwicklung und Ausbreitung von Antibiotikaresistenzen. Daher ist es wichtig, den Einsatz von Antibiotika für die Behandlung von Tier und Mensch auf ein medizinisch notwendiges Maß zu beschränken sowie die Anwendung von Bioziden und Schwermetallen in der Tierhaltung zu reduzieren. Darüber hinaus ist es sinnvoll, die Weiterentwicklung von Hygienemaßnahmen an der Schnittstelle zwischen der Umwelt und der klinischen Umgebung oder Viehzucht voranzutreiben.

Abstract

Antimicrobial resistance (AMR) is a threat to public and animal health on the global scale. The origin of the genes associated with resistance has long been unknown. Recently, there is a growing body of evidence demonstrating that environmental bacteria are resistant to a multitude of antibiotic substances and that this environmental reservoir of AMR is still growing. The analysis of the genomes of bacterial pathogens indicates that they have acquired their resistance profiles by incorporating different genetic elements through horizontal gene transfer. The ancestors of pathogenic bacteria, as well as the origin of resistance determinants, lay most likely in the environmental microbiota. Indeed, there is some evidence that at least some clinically relevant resistance genes have originated in environmental bacterial species. Thus, feasible measures are required to reduce the risks posed by AMR genes and resistant bacteria that occur in the environment. It has been shown that a concurrence of factors, such as high concentrations of antibiotics or heavy metals used as biocides and high bacterial densities, promote development and spread of antimicrobial resistance. For this purpose, it is essential to restrict the use of antibiotics for the treatment of livestock and humans to medical necessity, as well as to reduce the application of biocides and heavy metals in animal husbandry. Moreover, it is important to further develop sanitary measures at the interface between the environment and clinical settings or livestock farming.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Abb. 1
Abb. 2

Literatur

  1. D’Costa VM, King CE, Kalan L et al (2011) Antibiotic resistance is ancient. Nature 477:457–461

    Article  PubMed  Google Scholar 

  2. Bhullar K, Waglechner N, Pawlowski A et al (2012) Antibiotic resistance is prevalent in an isolated cave microbiome. PLoS ONE 7:e34953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Allen HK, Donato J, Wang HH, Cloud-Hansen KA, Davies J, Handelsman J (2010) Call of the wild: antibiotic resistance genes in natural environments. Nat Rev Microbiol 8:251–259

    Article  CAS  PubMed  Google Scholar 

  4. Aminov RI (2009) The role of antibiotics and antibiotic resistance in nature. Environ Microbiol 11:2970–2988

    Article  CAS  PubMed  Google Scholar 

  5. Kristiansson E, Fick J, Janzon A et al (2011) Pyrosequencing of antibiotic-contaminated river sediments reveals high levels of resistance and gene transfer elements. PLoS ONE 6:e17038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Pruden A, Arabi M, Storteboom HN (2012) Correlation between upstream human activities and riverine antibiotic resistance genes. Environ Sci Technol 46:11541–11549

    Article  CAS  PubMed  Google Scholar 

  7. CVMP (2016) CVMP strategy on antimicrobials 2016–2020

    Google Scholar 

  8. European Commission (2017) A European One Health Action Plan against Antimicrobial Resistance (AMR)

    Google Scholar 

  9. Exner M, Bhattacharya S, Christiansen B et al (2017) Antibiotic resistance: what is so special about multidrug-resistant gram-negative bacteria? GMS Hyg Infect Control 12:1–24

    Google Scholar 

  10. Bundesamt für Verbraucherschutz und Lebensmittelsicherheit (BVL), Paul-Ehrlich-Gesellschaft für Chemotherapie eV (PEG) (2016) GERMAP 2015 – Bericht über den Antibiotikaverbrauch und die Verbreitung von Antibiotikaresistenzen in der Human- und Veterinärmedizin in Deutschland

    Google Scholar 

  11. BVL (2017) Erneut weniger Antibiotika an Tierärzte abgegeben, Erscheinungsdatum 13.09.2017. Pressemitteilung Bundesamt für Verbraucherschutz und Lebensmittelsicherheit

    Google Scholar 

  12. WHO (2017) Critically important antimicrobials for human medicine, 5. Aufl. WHO, Genf

    Google Scholar 

  13. Berkner S, Konradi S, Schönfeld J (2014) Antibiotic resistance and the environment—there and back again: science & society series on science and drugs. Embo Rep 15:740–744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ratsak C, Barbara G, Sebastian Z, Delschen T (2013) Veterinärantibiotikarückstände in Gülle und Gärresten aus Nordrhein-Westfalen. Environ Sci Eur 25:7

    Article  Google Scholar 

  15. Knapp CW, Dolfing J, Ehlert PAI, Graham DW (2010) Evidence of increasing antibiotic resistance gene abundances in archived soils since 1940. Environ Sci Technol 44:580–587

    Article  CAS  PubMed  Google Scholar 

  16. Berendonk TU, Manaia CM, Merlin C et al (2015) Tackling antibiotic resistance: the environmental framework. Nat Rev Microbiol 13:310–317

    Article  CAS  PubMed  Google Scholar 

  17. Martinez JL (2009) Environmental pollution by antibiotics and by antibiotic resistance determinants. Environ Pollut 157:2893–2902

    Article  CAS  PubMed  Google Scholar 

  18. Vaz-Moreira I, Nunes OC, Manaia CM (2014) Bacterial diversity and antibiotic resistance in water habitats: searching the links with the human microbiome. FEMS Microbiol Rev 38:761–778

    Article  CAS  PubMed  Google Scholar 

  19. Gullberg E, Cao S, Berg OG et al (2011) Selection of resistant bacteria at very low antibiotic concentrations. PLoS Pathog 7:e1002158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Jutkina J, Marathe NP, Flach CF, Larsson DGJ (2017) Antibiotics and common antibacterial biocides stimulate horizontal transfer of resistance at low concentrations. Sci Total Environ 616-617:172–178

    Article  PubMed  Google Scholar 

  21. Landesanstalt für Umweltschutz Baden-Württemberg, Brauch H‑J, Gabriel S, Hüther-Windbiel U, Leclerc N, Mallat E, Metzinger M, Sacher F, Stretz A, Wenz M (2002) Teilprojekt Vorkommen von Pharmaka und Hormonen in Grund‑, Oberflächenwässern und Böden in Baden-Württemberg, Abschlussbericht. HSG, Landesanstalt für Umweltschutz Baden-Württemberg, 2002 Projekt-Nr. U33-00.01

    Google Scholar 

  22. Song J, Rensing C, Holm PE, Virta M, Brandt KK (2017) Comparison of metals and tetracycline as selective agents for development of tetracycline resistant bacterial communities in agricultural soil. Environ Sci Technol 51:3040–3047

    Article  CAS  PubMed  Google Scholar 

  23. Sattelberger R, Gans O, Martínez E (2005) Veterinärantibiotika in Wirtschaftsdünger und Boden. Umweltbundesamt, Wien

    Google Scholar 

  24. Manaia CM (2017) Assessing the risk of antibiotic resistance transmission from the environment to humans: non-direct proportionality between abundance and risk. Trends Microbiol 25:173–181

    Article  CAS  PubMed  Google Scholar 

  25. Woolhouse M, Ward M, van Bunnik B, Farrar J (2015) Antimicrobial resistance in humans, livestock and the wider environment. Philos Trans R Soc Lond, B, Biol Sci 370:20140083

    Article  PubMed  PubMed Central  Google Scholar 

  26. Wiedenbeck J, Cohan FM (2011) Origins of bacterial diversity through horizontal genetic transfer and adaptation to new ecological niches. FEMS Microbiol Rev 35:957–976

    Article  CAS  PubMed  Google Scholar 

  27. Benveniste R, Davies J (1973) Aminoglycoside antibiotic-inactivating enzymes in actinomycetes similar to those present in clinical isolates of antibiotic-resistant bacteria. Proc Natl Acad Sci USA 70:2276–2280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Trieu-Cuot P, Courvalin P (1986) Evolution and transfer of aminoglycoside resistance genes under natural conditions. J Antimicrob Chemother 18:93–102. https://doi.org/10.1093/jac/18.Supplement_C.93

    Article  CAS  PubMed  Google Scholar 

  29. Humeniuk C, Arlet G, Gautier V, Grimont P, Labia R, Philippon A (2002) β‑lactamases of kluyvera ascorbata, probable progenitors of some plasmid-encoded CTX-M types. Antimicrob Agents Chemother 46:3045–3049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Baquero F, Martínez J‑L, Cantón R (2008) Antibiotics and antibiotic resistance in water environments. Curr Opin Biotechnol 19:260–265

    Article  CAS  PubMed  Google Scholar 

  31. Tomova A, Ivanova L, Buschmann AH et al (2015) Antimicrobial resistance genes in marine bacteria and human uropathogenic Escherichia coli from a region of intensive aquaculture. Environ Microbiol Rep 7:803–809

    Article  CAS  PubMed  Google Scholar 

  32. Yong D, Toleman MA, Giske CG et al (2009) Characterization of a new metallo-beta-lactamase gene, bla (NDM-1), and a novel erythromycin esterase gene carried on a unique genetic structure in Klebsiella pneumoniae sequence type 14 from India. Antimicrob Agents Chemother 53:5046–5054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Müller H, Sib E, Gajdiss M et al (2018) Dissemination of multi-resistant gram-negative bacteria into German wastewater and surface waters. Unveröffentlichte Daten.

  34. Liu Y‑Y, Wang Y, Walsh TR et al (2015) Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study. Lancet Infect Dis 16:161–168

    Article  CAS  PubMed  Google Scholar 

  35. Hembach N, Schmid F, Alexander J, Hiller C, Rogall ET, Schwartz T (2017) Occurrence of the mcr-1 colistin resistance gene and other clinically relevant antibiotic resistance genes in microbial populations at different municipal wastewater treatment plants in Germany. Front Microbiol 8:1282

    Article  PubMed  PubMed Central  Google Scholar 

  36. Forsberg KJ, Reyes A, Wang B, Selleck EM, Sommer MO, Dantas G (2012) The shared antibiotic resistome of soil bacteria and human pathogens. Science 337:1107–1111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Guardabassi L (2013) Sixty years of antimicrobial use in animals: what is next? Vet Rec 173:599

    Article  PubMed  Google Scholar 

  38. Smet A, Martel A, Persoons D et al (2009) Comparative analysis of extended-spectrum-{beta}-lactamase-carrying plasmids from different members of Enterobacteriaceae isolated from poultry, pigs and humans: evidence for a shared {beta}-lactam resistance gene pool? J Antimicrob Chemother 63:1286–1288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Mesa RJ, Blanc V, Blanch AR et al (2006) Extended-spectrum beta-lactamase-producing Enterobacteriaceae in different environments (humans, food, animal farms and sewage). J Antimicrob Chemother 58:211–215

    Article  CAS  PubMed  Google Scholar 

  40. Wieler LH, Ewers C, Guenther S, Walther B, Lubke-Becker A (2011) Methicillin-resistant staphylococci (MRS) and extended-spectrum beta-lactamases (ESBL)-producing Enterobacteriaceae in companion animals: nosocomial infections as one reason for the rising prevalence of these potential zoonotic pathogens in clinical samples. Int J Med Microbiol 301:635–641

    Article  PubMed  Google Scholar 

  41. Hammerum AM, Heuer OE (2009) Human health hazards from antimicrobial-resistant Escherichia coli of animal origin. Clin Infect Dis 48:916–921

    Article  CAS  PubMed  Google Scholar 

  42. Schmithausen RM, Schulze-Geisthoevel SV, Stemmer F et al (2015) Analysis of transmission of MRSA and ESBL-E among pigs and farm personnel. PLoS ONE 10:e138173

    Article  PubMed  PubMed Central  Google Scholar 

  43. Wendel AF, Kolbe-Busch S, Ressina S et al (2015) Detection and termination of an extended low-frequency hospital outbreak of GIM-1-producing Pseudomonas aeruginosa ST111 in Germany. Am J Infect Control 43:635–639

    Article  PubMed  Google Scholar 

  44. Thiem A, Stieber M, Stoll C, Rohns H‑P, Schumacher V, Binder T (2006) Bedeutung von Antibiotikaresistenzen für die Rohwasserqualität. DVGW Energie Wasser Prax 12:12–13

    Google Scholar 

  45. UBA (2016) Konzepte zur Minderung von Arzneimitteleinträgen aus der landwirtschaftlichen Tierhaltung in die Umwelt. UBA Fachbroschüre

    Google Scholar 

  46. de With K (2015) „Antibiotic Stewardship“ – Rationaler Einsatz. Dtsch Arztebl 112:31–32

    Google Scholar 

  47. WHO (1997) Prevention and Control of Enterohaemorrhagic Escherichia coli Infections. WHO Consultation, Geneva

    Google Scholar 

  48. Schönfeld J, Konradi S, Berkner S, Westphal-Settele K (2017) Antimikrobielle Resistenzen in der Umwelt – Gibt es Neues zum bekannten Phänomen? UMID Nr. 2/2017, S 7–19

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jens Schönfeld.

Ethics declarations

Interessenkonflikt

K. Westphal-Settele, S. Konradi, F. Balzer, J. Schönfeld und R. Schmithausen geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Additional information

Die Autoren J. Schönfeld und R. Schmithausen teilen sich die Letztautorenschaft.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Westphal-Settele, K., Konradi, S., Balzer, F. et al. Die Umwelt als Reservoir für Antibiotikaresistenzen. Bundesgesundheitsbl 61, 533–542 (2018). https://doi.org/10.1007/s00103-018-2729-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00103-018-2729-8

Schlüsselwörter

Keywords

Navigation