Advertisement

Die wiederkehrende Notwendigkeit von Stechmücken-Surveillance und -Forschung

  • Helge KampenEmail author
  • Doreen Werner
Originalien und Übersichten

Zusammenfassung

Blut saugende Gliedertiere und die mit ihnen assoziierten Krankheiten stellen eine zunehmende Bedrohung für die Gesundheit von Mensch und Tier in Europa dar. Nachdem die endemische Malaria gegen Mitte des letzten Jahrhunderts ausgerottet worden war, gewinnen mit fortschreitender Globalisierung unter anderem Stechmücken als Überträger von Krankheitserregern (Vektoren) erneut enorme Bedeutung, da exotische Arten und stechmückenbürtige Pathogene zunehmend häufig eingeschleppt werden. Von Krankheitsausbrüchen und -fällen ist momentan insbesondere der südeuropäische Raum betroffen, aber auch nach Deutschland breiten sich invasive Stechmückenarten aus, darunter effiziente Vektoren. Während fundierte Kenntnisse zum Vektorpotenzial vieler tropischer und subtropischer Spezies existieren, sind entsprechende Daten über einheimische Arten rar. Ausnahmen bilden die Anopheles-Mücken, die im historischen Europa bereits als Überträger von Malariaparasiten fungierten. Es ist jedoch davon auszugehen, dass viele weitere einheimische Arten unter bestimmten Bedingungen Krankheitserreger übertragen können und jedenfalls unter dem Szenario einer Klimaerwärmung an Vektorkompetenz gewinnen. Für Risikoanalysen und -modellierungen ist daher die Überwachung der einheimischen Stechmückenfauna und der in ihr kursierenden potenziellen Pathogene dringend angeraten, ebenso die Erforschung der Bedingungen zur Ausbreitung von Vektoren und Erregern sowie zur Übertragung. Nur eine ausreichende Datenbasis kann helfen, gezielte prophylaktische Maßnahmen zu ergreifen und Bekämpfungsstrategien zu entwerfen. Internationale Gesundheitsorganisationen haben das längst erkannt und propagieren die kontinuierliche Sammlung von Daten zur Verbreitung von Stechmücken und mit ihnen assoziierter Krankheiten in der EU. Auf nationalen Ebenen sind die Behörden zurückhaltender, obwohl – ähnlich wie in vielen anderen Gesundheitsbereichen – sich auch bei den Stechmücken-assoziierten Krankheiten gezeigt hat, dass die Ergreifung präventiver Maßnahmen kostengünstiger ist als das Management von Krankheitsfällen und die Abdeckung der Folgekosten. Der vorliegende Beitrag soll die Notwendigkeit der Reintensivierung der Stechmückenüberwachung und -forschung in Deutschland und anderen europäischen Staaten illustrieren.

Schlüsselwörter

Stechmücken Vektoren Invasive Arten Globalisierung Klimawandel 

The recurring necessity of mosquito surveillance and research

Abstract

Hematophagous arthropods and the diseases associated with them represent a growing threat to human and animal health in Europe. After the eradication of endemic malaria from Europe in the middle of the last century, there has been a resurgence of mosquitoes as significant vectors of disease agents under the influence of continuing globalisation, as exotic species and mosquito-borne pathogens are being introduced with increasing frequency. At present, southern Europe is particularly affected by disease outbreaks and cases, but invasive mosquito species, including efficient vectors, have also emerged in Germany. While there is considerable knowledge on the vector potential of many tropical and subtropical mosquito species, corresponding data on the indigenous mosquito species are scarce. Exceptions are the Anopheles species, which were already vectors of malaria parasites in historic Europe. It must be assumed, however, that many further indigenous species are able to transmit pathogens under certain conditions and will by all means gain vector competence under a scenario of climate warming. Thus, the permanent surveillance of mosquitoes and mosquito-borne disease agents is paramount for the purposes of conducting risk analyses and modelling, in addition to research work addressing the conditions of the spread of vectors and pathogens and of pathogen transmission. Only ample data can facilitate taking appropriate prophylactic action and designing control strategies. International health organizations have realised this and started to promote data collection on mosquitoes and mosquito-borne diseases in the EU. At a national levels, authorities are more reluctant, although, similar to other fields of health, it has been shown for mosquito-borne diseases that preventive measures are more cost-saving than disease case management and the coverage of follow-up costs. The present article is intended to illustrate the necessity of the re-intensification of mosquito surveillance and research in Germany and other European countries.

Keywords

Mosquitoes Vectors Invasive species Globalisation Climate change 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

H. Kampen und D. Werner geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag enthält keine Studien an Menschen oder Tieren.

Literatur

  1. 1.
    Jones KE, Patel NG, Levy MA, Storeygard A, Balk D, Gittleman LJ, Daszak P (2008) Global trends in emerging infectious diseases. Nature 451:990–993CrossRefPubMedGoogle Scholar
  2. 2.
    Morillon M, Mafart B, Matton T (2002) Yellow fever in Europe in 19th century. In: Bennike P, Bodzsar EB, Suzanne C (Hrsg) Ecological aspects of past settlement in Europe. European Anthropological Association, Biennal Yearbook. Eötvös University Press, Budapest, S 211–222Google Scholar
  3. 3.
    Schaffner F, Mathis A (2014) Dengue and dengue vectors in the WHO European region: past, present, and scenarios for the future. Lancet Infect Dis 14:1271–1280CrossRefPubMedGoogle Scholar
  4. 4.
    Bruce-Chwatt LJ, de Zulueta J (1980) The rise and fall of Malaria in Europe. Oxford University Press, Oxford, 240 SS.Google Scholar
  5. 5.
    Lundström J (1999) Mosquito-borne viruses in western Europe: a review. J Vector Ecol 24:1–39PubMedGoogle Scholar
  6. 6.
    Hubálek Z (2008) Mosquito-borne viruses in Europe. Parasitol Res 103(Suppl 1):S29–S43CrossRefPubMedGoogle Scholar
  7. 7.
    Hubálek Z, Halouzka J (1999) West Nile fever – a reemerging mosquito-borne viral disease in Europe. Emerg Infect Dis 5:643–650PubMedCentralCrossRefPubMedGoogle Scholar
  8. 8.
    Krüger A, Rech A, Su X-Z, Tannich E (2001) Two cases of autochthonous Plasmodium falciparum malaria in Germany with evidence for local transmission by indigenous Anopheles plumbeus. Trop Med Int Health 6:983–985CrossRefPubMedGoogle Scholar
  9. 9.
    Genchi C, Kramer LH, Rivasi F (2011) Dirofilarial infections in Europe. Vector Borne Zoonotic Dis 11:1307–1317CrossRefPubMedGoogle Scholar
  10. 10.
    Tatem AJ, Huang Z, Das A, Qi Q, Roth J, Qiu Y (2012) Air travel and vector-borne disease movement. Parasitology 139:1816–1830CrossRefPubMedGoogle Scholar
  11. 11.
    Medlock JM, Hansford KM, Schaffner F, Versteirt V, Hendrickx G, Zeller H, van Bortel W (2012) A review of the invasive mosquitoes in Europe: ecology, public health risks, and control options. Vector Borne Zoonotic Dis 12:435–447PubMedCentralCrossRefPubMedGoogle Scholar
  12. 12.
    Pluskota B, Storch V, Braunbeck T, Beck M, Becker N (2008) First record of Stegomyia albopicta (Skuse) (Diptera: Culicidae) in Germany. Eur Mosq Bull 26:1–5Google Scholar
  13. 13.
    Becker N, Geier M, Balczun C et al (2013) Repeated introduction of Aedes albopictus into Germany, July to October 2012. Parasitol Res 112:1787–1790CrossRefPubMedGoogle Scholar
  14. 14.
    Werner D, Kampen H (2015) Aedes albopictus breeding in southern Germany, 2014. Parasitol Res 114:831–834CrossRefPubMedGoogle Scholar
  15. 15.
    Wymann MN, Flacio E, Radczuweit S, Patocchi N, Lüthy P (2008) Asian tiger mosquito (Aedes albopictus) – a threat for Switzerland? Euro Surveill 13:pii=8058Google Scholar
  16. 16.
    Thomas SM, Obermayr U, Fischer D, Kreyling J, Beierkuhnlein C (2012) Low-temperature threshold for egg survival of a post-diapause and non-diapause European aedine strain, Aedes albopictus (Diptera: Culicidae). Parasit Vectors 5:100PubMedCentralCrossRefPubMedGoogle Scholar
  17. 17.
    Caminade C, Medlock JM, Ducheyne E, McIntyre KM, Leach S, Baylis M, Mprse AP (2012) Suitability of European climate for the Asian tiger mosquito Aedes albopictus: recent trends and future scenarios. J R Soc Interface 9:2708–2717PubMedCentralCrossRefPubMedGoogle Scholar
  18. 18.
    Kampen H, Werner D (2014) Out of the bush: the Asian bush mosquito Aedes japonicus japonicus (Theobald, 1901) (Diptera, Culicidae) becomes invasive. Parasit Vectors 7:59PubMedCentralCrossRefPubMedGoogle Scholar
  19. 19.
    Kampen H (2014) Wird die Malaria wieder eine Gefahr für Europa? In: Lozán JL, Grassl H, Piepenburg D, Brandt A (Hrsg) Warnsignal Klima: Gesundheitsrisiken – Gefahren für Pflanzen, Tiere und Menschen. http://www.klima-warnsignale.uni-hamburg.de/wp-content/uploads/2014/06/kampen.pdf. Zugegriffen: 17. Aug 2015Google Scholar
  20. 20.
    Eling W, van Gemert GJ, Akinpelu O, Curtis J, Curtis CF (2003) Production of Plasmodium falciparum sporozoites by Anopheles plumbeus. Eur Mosq Bull 15:12–13Google Scholar
  21. 21.
    Fonseca DM, Keyghobadi N, Malcolm CA et al (2004) Emerging vectors in the Culex pipiens complex. Science 303:1535–1538CrossRefPubMedGoogle Scholar
  22. 22.
    Rudolf M, Czajka C, Börstler J, Melaun C, Jöst H, von Thien H, Badusche M, Becker N, Schmidt-Chanasit J, Krüger A, Tannich E, Becker S (2013) First nationwide surveillance of Culex pipiens complex and Culex torrentium mosquitoes demonstrated the presence of Culex pipiens biotype pipiens/molestus hybrids in Germany. PLoS One 8:e71832PubMedCentralCrossRefPubMedGoogle Scholar
  23. 23.
    Jöst H, Bialonski A, Schmetz C, Günther S, Becker N, Schmidt-Chanasit J (2011) Isolation and phylogenetic analysis of Batai virus, Germany. Am J Trop Med Hyg 84:241–243PubMedCentralCrossRefPubMedGoogle Scholar
  24. 24.
    Jöst H, Bialonski A, Storch V, Günther S, Becker N, Schmidt-Chanasit J (2010) Isolation and phylogenetic analysis of Sindbis viruses from mosquitoes in Germany. J Clin Microbiol 48:1900–1903PubMedCentralCrossRefPubMedGoogle Scholar
  25. 25.
    Jöst H, Bialonski A, Maus D et al (2011) Isolation of Usutu virus in Germany. Am J Trop Med Hyg 85:551–553PubMedCentralCrossRefPubMedGoogle Scholar
  26. 26.
    Czajka C, Becker N, Jöst H, Poppert S, Schmidt-Chanasit J, Krüger A, Tannich E (2014) Stable transmission of Dirofilaria repens, northern Germany. Emerg Infect Dis 20:329–331PubMedCentralCrossRefGoogle Scholar
  27. 27.
    Kronefeld M, Kampen H, Sassnau R, Werner D (2014) Molecular confirmation of the occurrence of Dirofilaria immitis, Dirofilaria repens and Setaria tundra in mosquitoes from Germany. Parasit Vectors 7:30PubMedCentralCrossRefPubMedGoogle Scholar
  28. 28.
    Lundström JO (1994) Vector competence of western European mosquitoes for arboviruses – a review of field and experimental studies. Bull Soc Vector Ecol 19:23–36Google Scholar
  29. 29.
    Balenghien T, Vazeille M, Grandadam M et al (2012) Vector competence of some French Culex and Aedes mosquitoes for West Nile virus. Vector Borne Zoonotic Dis 8:589–595CrossRefGoogle Scholar
  30. 30.
    Kilpatrick AM, Fonseca DM, Ebel GD, Reddy MR, Kramer LD (2010) Spatial and temporal variation in vector competence of Culex pipiens and Cx. restuans mosquitoes for West Nile virus. Am J Trop Med Hyg 83:607–613PubMedCentralCrossRefPubMedGoogle Scholar
  31. 31.
    Dodson BL, Kramer LD, Rasgon JL (2012) Effects of larval rearing temperature on immature development and West Nile virus vector competence of Culex tarsalis. Parasit Vectors 5:199PubMedCentralCrossRefPubMedGoogle Scholar
  32. 32.
    Huber K, Jansen S, Leggewie M et al (2014) Aedes japonicus japonicus (Diptera: Culicidae) from Germany have vector competence for Japan encephalitis virus but are refractory to infection with West Nile virus. Parasitol Res 113:3195–3199CrossRefPubMedGoogle Scholar
  33. 33.
    Zielke D, Werner D, Schaffner F, Kampen H, Fonseca DM (2014) Unexpected patterns of admixture in German populations of Aedes japonicus japonicus (Diptera: Culicidae) underscore the importance of human intervention. PLoS One 9:e99093PubMedCentralCrossRefPubMedGoogle Scholar
  34. 34.
    Kampen H, Kronefeld M, Werner D (2012) Culicid mosquitoes as vectors of disease agents in Europe. In Mehlhorn H (Hrsg) Arthropods as vectors of emerging diseases, Bd 3. Parasitol Res Monogr, Springer, Heidelberg, S 1–30CrossRefGoogle Scholar
  35. 35.
    Renault P, Balleydier E, D’Ortenzio E, Bâville M, Filleul L (2012) Epidemiology of chikungunya infection on Reunion Island, Mayotte, and neighboring countries. Med Mal Infect 42:93–101CrossRefPubMedGoogle Scholar
  36. 36.
    RKI (2015) Außergewöhnliche biologische Gefahren, Agenzien-Katalog. http://www.abig.rki.de/ABiG/DE/Content/Agenzien/Agenzien-start.html. Zugegriffen: 17. Aug 2015
  37. 37.
    RKI (2014) Infektionsepidemiologisches Jahrbuch meldepflichtiger Infektionskrankheiten 2013. RKI, Berlin, S 143–147Google Scholar
  38. 38.
    Rezza G, Nicoletti L, Angelini R et al (2007) Infection with chikungunya virus in Italy: an outbreak in a temperate region. Lancet 370:1840–1846CrossRefPubMedGoogle Scholar
  39. 39.
    Tomasello D, Schlagenhauf P (2013) Chikungunya and dengue autochthonous cases in Europe, 2007–2012. Travel Med Infect Dis 11:274–284CrossRefPubMedGoogle Scholar
  40. 40.
    WHO (2014) Chikungunya – France. Disease Outbreak News, 23 October 2014. http://www.who.int/csr/don/23-october-2014-chikungunya/en/. Zugegriffen: 17. Aug 2015
  41. 41.
    Marchand E, Prat C, Jeannin C et al (2013) Autochthonous case of dengue in France, October 2013. Euro Surveill 18:pii=20661Google Scholar
  42. 42.
    Schaffner F, Fontenille D, Mathis A (2014) Autochthonous dengue emphasizes the threat of arbovirosis in Europe. Lancet Infect Dis 14:1044CrossRefPubMedGoogle Scholar
  43. 43.
    Pervanidou D, Detsis M, Danis K et al (2014) West Nile virus outbreak in humans, Greece, 2012: third consecutive year of local transmission. Euro Surveill 19:pii=20758Google Scholar
  44. 44.
    Pem-Novosel I, Vilibic-Cavlek T, Gjenero-Margan I et al (2014) First outbreak of West Nile virus neuroinvasive disease in humans, Croatia, 2012. Vector Borne Zoonotic Dis 14:82–84PubMedCentralCrossRefPubMedGoogle Scholar
  45. 45.
    Vilibic-Cavlek T, Kaic B, Barbic L et al (2014) First evidence of simultaneous occurrence of West Nile virus and Usutu virus neuroinvasive disease in humans in Croatia during the 2013 outbreak. Infection 42:689–695CrossRefPubMedGoogle Scholar
  46. 46.
    Cavrini F, Gaibani P, Longo G et al (2009) Usutu virus infection in a patient who underwent orthotropic liver transplantation, Italy, August-September 2009. Euro Surveill 14:pii=19448Google Scholar
  47. 47.
    Pecorari M, Longo G, Gennari W et al (2009) First human case of Usutu virus neuroinvasive infection, Italy, August-September 2009. Euro Surveill 14:pii=19446Google Scholar
  48. 48.
    Santini M, Vilibic-Cavlek T, Barsic B et al (2014) First cases of human Usutu virus neuroinvasive infection in Croatia, August-September 2013: clinical and laboratory features. J Neurovirol 21:92–97CrossRefPubMedGoogle Scholar
  49. 49.
    Danis K, Lenglet A, Tseroni M, Baka A, Tsiodras S, Bonovas S (2013) Malaria in Greece: historical and current reflections on a re-emerging vector borne disease. Travel Med Infect Dis 11:8–14CrossRefPubMedGoogle Scholar
  50. 50.
    Sałamatin RV, Pavlikovska TM, Sagach OS (2013) Human dirofilariasis due to Dirofilaria repens in Ukraine, an emergent zoonosis: epidemiological report of 1465 cases. Acta Parasitol 58:592–598PubMedGoogle Scholar
  51. 51.
    Sousa CA, Clairouin M, Seixas G et al (2012) Ongoing outbreak of dengue type 1 in the Autonomous Region of Madeira, Portugal: preliminary report. Euro Surveill 17:pii=20333Google Scholar
  52. 52.
    Guzman MG, Harris E (2015) Dengue. Lancet 385:453–465CrossRefPubMedGoogle Scholar
  53. 53.
    Linke S, Niedrig M, Kaiser A et al (2007) Serologic evidence of West Nile Virus infections in wild birds captured in Germany. Am J Trop Med Hyg 77:358–364PubMedGoogle Scholar
  54. 54.
    Sambri V, Capobianchi M, Charrel R et al (2013) West Nile virus in Europe: emergence, epidemiology, diagnosis, treatment, and prevention. Clin Microbiol Infect 19:699–704CrossRefPubMedGoogle Scholar
  55. 55.
    Pachler K, Lebl K, Berer D, Rudolf I, Hubálek Z, Nowotny N (2014) Putative new West Nile virus lineage in Uranotaenia unguiculata mosquitoes, Austria, 2013. Emerg Infect Dis 20:2119–2122PubMedCentralCrossRefPubMedGoogle Scholar
  56. 56.
    Hofmeister EK (2011) West Nile virus: North American experience. Integr Zool 6:279–289CrossRefPubMedGoogle Scholar
  57. 57.
    Becker N, Jöst H, Ziegler U et al (2012) Epizootic emergence of Usutu virus in wild and captive birds in Germany. PLoS One 7:e32604PubMedCentralCrossRefPubMedGoogle Scholar
  58. 58.
    Chevalier V, Pépin M, Plée L, Lancelot R (2010) Rift Valley fever – a threat for Europe? Euro Surveill 15:p=19506Google Scholar
  59. 59.
    Reiter P (2010) West Nile virus in Europe: understanding the present to gauge the future. Euro Surveill 15:p= 19508Google Scholar
  60. 60.
    Reiter P (2010) Yellow fever and dengue: a threat to Europe? Euro Surveill 15:p=19509Google Scholar
  61. 61.
    Werner D, Kampen H (2010) Gnitzen und ihre medizinische Bedeutung. Denisia 30:245–260Google Scholar
  62. 62.
    Gethmann J, Hoffmann B, Probst C et al (2010) Drei Jahre Blauzungenvirus Serotyp 8 in Deutschland – ein Überblick. Tierärztl Umschau 65:4–12Google Scholar
  63. 63.
    Maier WA, Grunewald J, Habedank B et al (2003) Mögliche Auswirkungen von Klimaveränderungen auf die Ausbreitung von primär humanmedizinisch relevanten Krankheitserregern über tierische Vektoren sowie auf die wichtigen Humanparasiten in Deutschland. Climate Change 05/03, Forschungsbericht 20061218/11 im Auftrag des Umweltbundesamtes (UBA-FB 000454), erstellt im Rahmen des Umweltforschungsplanes des Bundesministeriums für Umwelt, Naturschutz und Reaktorsicherheit. Umweltbundesamt, Berlin, 341 SS.Google Scholar
  64. 64.
    Bellini R, Zeller H, Van Bortel W (2014) A review of the vector management methods to prevent and control outbreaks of West Nile virus infection and the challenge for Europe. Parasit Vectors 7:323PubMedCentralCrossRefPubMedGoogle Scholar
  65. 65.
    Barber LM, Schleier JJ 3rd, Peterson RK (2010) Economic cost analysis of West Nile virus outbreak, Sacramento County, California, USA, 2005. Emerg Infect Dis 16:480–486PubMedCentralCrossRefPubMedGoogle Scholar
  66. 66.
    Kampen H, Medlock JM, Vaux AGC et al (2015) Approaches to passive mosquito surveillance in the EU. Parasit Vectors 8:9PubMedCentralCrossRefPubMedGoogle Scholar
  67. 67.
    Van der Berg H, Velayudhan R, Ejov M (2013) Regional framework for surveillance and control of invasive mosquito vectors and re-emerging vector-borne diseases 2014–2020. WHO Europe, Kopenhagen, 18 SS.Google Scholar
  68. 68.
    WHO-EMCA (2013) Guidelines for the Control of Mosquitoes of Public Health Importance in Europe 2013. WHO Europe, Kopenhagen, 41 SS. http://www.emca-online.eu/documents/visitors/EMCA_guidelines_Speyer_2011.pdf. Zugegriffen: 17. Aug 2015Google Scholar
  69. 69.
    ECDC (2012) Guidelines for the Surveillance of Invasive Mosquito Species in Europe. ECDC Technical Report. Stockholm, 95 SS.Google Scholar
  70. 70.
    ECDC (2014) Guidelines for the Surveillance of Native Mosquito Species in Europe. ECDC Technical Report. Stockholm, 111 SS.Google Scholar
  71. 71.
    EU (2014) Verordnung (EU) Nr. 1143/2014 des Europäischen Parlamentes und des Rates vom 22. Oktober 2014 über die Prävention und das Management der Einbringung und Ausbreitung invasiver gebietsfremder Arten. Amtsbl Europ Union L317/35, 21 SS.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Friedrich-Loeffler-InstitutBundesforschungsinstitut für TiergesundheitGreifswald – Insel RiemsDeutschland
  2. 2.Leibniz-Zentrum für AgrarlandschaftsforschungMünchebergDeutschland

Personalised recommendations