Gendermedizin

Geschlechtsspezifische Aspekte in der klinischen Medizin
Leitthema

Zusammenfassung

Gendermedizin berücksichtigt individuell und altersabhängig das biologische und psychosoziale Geschlecht und stellt einen Brückenschlag zur personalisierten Medizin dar. Die Gendermedizin untersucht Unterschiede und Gemeinsamkeiten in der Prävention, Wahrnehmung und Präsentation von Krankheiten sowie im Therapieerfolg zwischen beiden Geschlechtern (geschlechtsspezifische Medizin). Dabei sind neben genetischen Unterschieden, Unterschieden bei den Geschlechtschromosomen, Hormonen und im Stoffwechsel auch die Umwelt, Kultur und gesellschaftliche Einflüsse maßgeblich. Außerdem findet lebenslang eine fortlaufende Wechselwirkung zwischen körperlichen und psychosozialen Faktoren statt, die das Wohlbefinden bestimmen. Epigenetische Modifikationen belegen den Effekt von Umweltfaktoren auf körperliche Funktionen mit langfristigen gesundheitlichen Auswirkungen. Durch fetale Programmierung kann die Gesundheit der Nachkommen schon in utero geschlechtsabhängig geprägt werden. Schmerzempfinden und Stressantworten unterscheiden sich meist deutlich zwischen den Geschlechtern. Insgesamt sind Frauen im Lebenszyklus stärkeren körperlichen Veränderungen unterworfen, die mit unterschiedlichen gesellschaftlichen Rollen und seelischen Belastungen einhergehen. Frauen entwickeln häufiger Depressionen und funktionelle Einschränkungen. Bei Männern werden „weiblich konnotierte Erkrankungen“ wie Depressionen und Osteoporose weniger oft erkannt. Deutliche Geschlechterunterschiede finden sich in der Medizin bei Veränderungen des Immunsystems und bei chronischen Krankheiten wie Übergewicht, Typ-2-Diabetes, Hypertonie und Herz-Kreislauf-Erkrankungen. Frauen manifestieren häufiger Autoimmunerkrankungen und Schmerzsyndrome sowie im Alter neurodegenerative Veränderungen. Männer haben eine kürzere Lebenserwartung, weisen aber gleichzeitig anteilmäßig mehr gesunde Lebensjahre auf. Letzteres dürfte zu einem größeren Teil auf psychosoziale und weniger auf biologische Unterschiede zurückzuführen sein, was auch gesundheitspolitische Maßnahmen impliziert. Eine moderne klinische Medizin berücksichtigt individuelle Risikofaktoren auf Basis von geschlechtssensitiven Gesundheitskonzepten mit dem Ziel einer besseren Lebensqualität von Mann und Frau.

Schlüsselwörter

Geschlecht Gender Umwelt Epigenetik Biologie 

Gender medicine

Sex- and gender-specific aspects of clinical medicine

Abstract

Gender medicine studies sex- and gender-based differences in the development and prevention of diseases, the awareness and presentation of symptoms, and the effectiveness of therapy. Gender medicine is part of personalized medicine, considering differences in biological and psychosocial factors individually. There are differences in genes, chromosomes, hormones, and metabolism as well as differences in culture, environment, and society. Lifelong interactions between physical and psychosocial factors will influence the health and ill-health of men and women in different ways. Epigenetic modifications provide evidence of the impact of environment and lifestyle during vulnerable phases on biological processes, effecting future generations. Maternal lifestyle and environmental factors during pregnancy can impact the health of offspring in later life already in utero in a sex-specific way. Pain, stress, and coping styles differ between men and women. Women experience more dramatic physical changes during their lifetime, which are associated with specific burdens and psychosocial alterations. Women with multiple roles and responsibilities suffering from stress develop depression more frequently. However, men are often not diagnosed and treated appropriately in cases of depression or osteoporosis, diseases that are typically considered “female.„ There are prominent differences between men and women in medicine regarding the immune system, inflammation, and noncommunicable diseases such as obesity, type 2 diabetes, hypertension, and cardiovascular disease. Women experience more often autoimmune diseases and suffer more frequently from (chronic) pain, neurodegenerative changes, and functional disabilities. Men have shorter life expectancy but relatively more healthy years of life, which is in greater part ascribed to psychosocial determinants. State-of-the-art clinical medicine comprises individual risk factors based on sex- and gender-sensitive health programs in order to improve the health-related quality of life for men and women.

Keywords

Sex Gender Environment Epigenetics Biology 

Literatur

  1. 1.
    Glezerman M (2010) Foreword: gender-specific medicine – environment and biology. In: Legato MJ (Hrsg) Principles of gender-specific medidicine. Elsevier, London, S xvii–xxGoogle Scholar
  2. 2.
    Harpaz BJ (1997) Diagnosing gender differences in health. Los Angeles Times. http://articles.latimes.com/1997-03-02/news/mn-33984_1_gender-differences. Zugegriffen: 20. März 2014
  3. 3.
    King BM (2010) Point: a call for proper usage of „gender“ and „sex“ in biomedical publications. Am J Physiol Regul Integr Comp Physiol 298:R1700–R1701Google Scholar
  4. 4.
    Geary N (2010) Counterpoint: physiologists should not distinguish „sex“ and „gender“. Am J Physiol Regul Integr Comp Physiol 298:R1702–R1704Google Scholar
  5. 5.
    Ravi B, Kannan M (2013) Epigenetics in the nervous system: an overview of its essential role. Indian J Hum Genet 19:384–391PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Legato MJ, Bilezikian JP (2004) Principles of gender-specific medicine. Elsevier Academic Press, AmsterdamGoogle Scholar
  7. 7.
    Bairey Merz CN (2014) Gender medicine and women’s health: the US perspective [Nicht veröffentlichte Vortragsnotiz]. Universitätsvorlesung 2014 „Gendermedizin im Spannungsfeld von Biologie, Gesellschaft, Wirtschaft und Politik“, Medizinische Universität Wien, Wien. 5. März 2014Google Scholar
  8. 8.
    Spiers NA, Matthews RJ, Barker GA et al (2005) Standard of living in the retirement survey: a predictor of six-year functional limitation onset and mortality in women, but not in men from ages 55–69 years. Disabil Rehabil 27:1415–1423PubMedCrossRefGoogle Scholar
  9. 9.
    Mccartney G, Mahmood L, Leyland AH et al (2011) Contribution of smoking-related and alcohol-related deaths to the gender gap in mortality: evidence from 30 European countries. Tob Control 20:166–168PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Richter-Appelt H (2013) Intersexualität nicht Transsexualität. Bundesgesundheitsbl Gesundheitsforsch Gesundheitsschutz 56:240–249CrossRefGoogle Scholar
  11. 11.
    Holterhus PM (2013) Intersexualität und Differences of Sex Development (DSD). Bundesgesundheitsbl Gesundheitsforsch Gesundheitsschutz 56:1686–1694CrossRefGoogle Scholar
  12. 12.
    Schweizer K, Brunner F (2013) Sexuelle Orientierungen. Bundesgesundheitsbl Gesundheitsforsch Gesundheitsschutz 56:231–239CrossRefGoogle Scholar
  13. 13.
    Beauvoir SD (1949) Le deuxième sexe. Gallimard, Paris, S 285–286Google Scholar
  14. 14.
    Short SE, Yang YC, Jenkins TM (2013) Sex, gender, genetics, and health. Am J Public Health 103(Suppl 1):S93–S101Google Scholar
  15. 15.
    Liu J, Morgan M, Hutchison K et al (2010) A study of the influence of sex on genome wide methylation. PLoS One 5:e10028PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Hughes JF, Skaletsky H, Brown LG et al (2012) Strict evolutionary conservation followed rapid gene loss on human and rhesus Y chromosomes. Nature 483:82–86PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Charchar FJ, Bloomer LD, Barnes TA et al (2012) Inheritance of coronary artery disease in men: an analysis of the role of the Y chromosome. Lancet 379:915–922PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Regitz-Zagrosek V (2012) Geschlechterunterschiede bei Herzinsuffizienz. In: Kautzky-Willer A (Hrsg) Gendermedizin. UTB Böhlau, Vienna, S 161–178Google Scholar
  19. 19.
    Almqvist C, Worm M, Leynaert B (2008) Impact of gender on asthma in childhood and adolescence: a GA2LEN review. Allergy 63:47–57PubMedGoogle Scholar
  20. 20.
    Finkelstein JS, Lee H, Burnett-Bowie SA et al (2013) Gonadal steroids and body composition, strength, and sexual function in men. N Engl J Med 369:1011–1022PubMedCrossRefGoogle Scholar
  21. 21.
    Llaneza P, Garcia-Portilla MP, Llaneza-Suarez D et al (2012) Depressive disorders and the menopause transition. Maturitas 71:120–130PubMedCrossRefGoogle Scholar
  22. 22.
    Huxley RR, Woodward M (2011) Cigarette smoking as a risk factor for coronary heart disease in women compared with men: a systematic review and meta-analysis of prospective cohort studies. Lancet 378:1297–1305PubMedCrossRefGoogle Scholar
  23. 23.
    Rink M, Xylinas E, Trinh QD et al (2013) Gender-specific effect of smoking on upper tract urothelial carcinoma outcomes. BJU Int 112:623–637PubMedCrossRefGoogle Scholar
  24. 24.
    Zemp Stutz E, Dratva J (2012) Gender und obstruktive Lungenerkrankungen. In: Kautzky-Willer A (Hrsg) Gendermedizin. UTB Böhlau, Vienna, S 223–239Google Scholar
  25. 25.
    Gan WQ, Man SF, Postma DS et al (2006) Female smokers beyond the perimenopausal period are at increased risk of chronic obstructive pulmonary disease: a systematic review and meta-analysis. Respir Res 7:52PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Aryal S, Diaz-Guzman E, Mannino DM (2013) COPD and gender differences: an update. Transl Res 162:208–218PubMedCrossRefGoogle Scholar
  27. 27.
    Devito EE, Herman AI, Waters AJ et al (2014) Subjective, physiological and cognitive responses to intravenous nicotine: effects of sex and menstrual cycle phase. Neuropsychopharmacology 39:1431–1440Google Scholar
  28. 28.
    Coste J, Quinquis L, D’almeida S et al (2014) Smoking and health-related quality of life in the general population. Independent relationships and large differences according to patterns and quantity of smoking and to gender. PLoS One 9:e91562PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Schindler C, Keidel D, Gerbase MW et al (2009) Improvements in PM10 exposure and reduced rates of respiratory symptoms in a cohort of Swiss adults (SAPALDIA). Am J Respir Crit Care Med 179:579–587PubMedCrossRefGoogle Scholar
  30. 30.
    Bucksch J, Finne E, Glucks S et al (2012) Die Entwicklung von Geschlechterunterschieden im gesundheitsrelevanten Verhalten Jugendlicher von 2001 bis 2010. Gesundheitswesen 74(Suppl):S56–S62Google Scholar
  31. 31.
    Held C, Iqbal R, Lear SA et al (2012) Physical activity levels, ownership of goods promoting sedentary behaviour and risk of myocardial infarction: results of the INTERHEART study. Eur Heart J 33:452–466PubMedCrossRefGoogle Scholar
  32. 32.
    Wardle J, Haase AM, Steptoe A et al (2004) Gender differences in food choice: the contribution of health beliefs and dieting. Ann Behav Med 27:107–116PubMedCrossRefGoogle Scholar
  33. 33.
    Everson-Rose SA, Lewis TT (2005) Psychosocial factors and cardiovascular diseases. Annu Rev Public Health 26:469–500PubMedCrossRefGoogle Scholar
  34. 34.
    Lee S, Colditz GA, Berkman LF et al (2003) Caregiving and risk of coronary heart disease in U.S. women: a prospective study. Am J Prev Med 24:113–119PubMedCrossRefGoogle Scholar
  35. 35.
    Lundberg U (2008) Catecholamines and environmental stress. http://www.macses.ucsf.edu/research/allostatic/catecholamine.php. Zugegriffen: 19. Jan 2014
  36. 36.
    Mcgregor AJ, Templeton K, Kleinman MR et al (2013) Advancing sex and gender competency in medicine: sex & gender women’s health collaborative. Biol Sex Differ 4:11PubMedCentralPubMedCrossRefGoogle Scholar
  37. 37.
    Berntsson L, Lundberg U, Krantz G (2006) Gender differences in work-home interplay and symptom perception among Swedish white-collar employees. J Epidemiol Community Health 60:1070–1076PubMedCentralPubMedCrossRefGoogle Scholar
  38. 38.
    Dür M, Sadloňová M, Haider S et al (2014) Health determining concepts important to people with Crohn’s disease and their coverage by patient-reported outcomes of health and wellbeing. J Crohns Colitis 8:45–55PubMedCentralPubMedCrossRefGoogle Scholar
  39. 39.
    Svenningsson I, Bjorkelund C, Marklund B et al (2012) Anxiety and depression in obese and normal-weight individuals with diabetes type 2: a gender perspective. Scand J Caring Sci 26:349–354PubMedCrossRefGoogle Scholar
  40. 40.
    Eriksson AK, Van Den Donk M, Hilding A et al (2013) Work stress, sense of coherence, and risk of type 2 diabetes in a prospective study of middle-aged Swedish men and women. Diabetes Care 36:2683–2689PubMedCrossRefGoogle Scholar
  41. 41.
    Heraclides A, Chandola T, Witte DR et al (2009) Psychosocial stress at work doubles the risk of type 2 diabetes in middle-aged women: evidence from the Whitehall II study. Diabetes Care 32:2230–2235PubMedCentralPubMedCrossRefGoogle Scholar
  42. 42.
    Meeker JD (2012) Exposure to environmental endocrine disruptors and child development. Arch Pediatr Adolesc Med 166:952–958PubMedGoogle Scholar
  43. 43.
    Freire C, Koifman S (2013) Pesticides, depression and suicide: a systematic review of the epidemiological evidence. Int J Hyg Environ Health 216:445–460PubMedCrossRefGoogle Scholar
  44. 44.
    Kundakovic M, Gudsnuk K, Franks B et al (2013) Sex-specific epigenetic disruption and behavioral changes following low-dose in utero bisphenol A exposure. Proc Natl Acad Sci U S A 110:9956–9961PubMedCentralPubMedCrossRefGoogle Scholar
  45. 45.
    Gabory A, Roseboom TJ, Moore T et al (2013) Placental contribution to the origins of sexual dimorphism in health and diseases: sex chromosomes and epigenetics. Biol Sex Differ 4:5PubMedCentralPubMedCrossRefGoogle Scholar
  46. 46.
    Cvitic S, Longtine MS, Hackl H et al (2013) The human placental sexome differs between trophoblast epithelium and villous vessel endothelium. PLoS One 8:e79233PubMedCentralPubMedCrossRefGoogle Scholar
  47. 47.
    Goldstein JM, Handa RJ, Tobet SA (2013) Disruption of fetal hormonal programming (prenatal stress) implicates shared risk for sex differences in depression and cardiovascular disease. Front Neuroendocrinol 35:140–158Google Scholar
  48. 48.
    Tiniakou E, Costenbader KH, Kriegel MA (2013) Sex-specific environmental influences on the development of autoimmune diseases. Clin Immunol 149:182–191PubMedCrossRefGoogle Scholar
  49. 49.
    European Commission, Eurostat (2013) Healthy life years statistics – statistics explained. http://epp.eurostat.ec.europa.eu/statistics_explained/index.php/Healthy_life_years_statistics. Zugegriffen: 19. Jan 2014
  50. 50.
    Cherepanov D, Palta M, Fryback DG et al (2011) Gender differences in multiple underlying dimensions of health-related quality of life are associated with sociodemographic and socioeconomic status. Med Care 49:1021–1030PubMedCentralPubMedCrossRefGoogle Scholar
  51. 51.
    Luy M (2002) Warum Frauen länger leben – Erkenntnisse aus einem Vergleich von Kloster- und Allgemeinbevölkerung. Mater Bevölkwiss 106:1–164Google Scholar
  52. 52.
    Kindig DA, Cheng ER (2013) Even as mortality fell in most US counties, female mortality nonetheless rose in 42.8 % of counties from 1992 to 2006. Health Aff (Millwood) 32:451–458CrossRefGoogle Scholar
  53. 53.
    Idler EL (2003) Discussion: gender differences in self-rated health, in mortality, and in the relationship between the two. Gerontologist 43:372–375CrossRefGoogle Scholar
  54. 54.
    Case A, Paxson C (2005) Sex differences in morbidity and mortality. Demography 42:189–214PubMedCrossRefGoogle Scholar
  55. 55.
    Thorslund M, Wastesson JW, Agahi N et al (2013) The rise and fall of women’s advantage: a comparison of national trends in life expectancy at age 65 years. Eur J Ageing 10:271–277PubMedCentralPubMedCrossRefGoogle Scholar
  56. 56.
    Jordan-Young RM (2012) Hormones, context, and „brain gender“: a review of evidence from congenital adrenal hyperplasia. Soc Sci Med 74:1738–1744PubMedCrossRefGoogle Scholar
  57. 57.
    Ingalhalikar M, Smith A, Parker D et al (2014) Sex differences in the structural connectome of the human brain. Proc Natl Acad Sci U S A 111:823–828PubMedCentralPubMedCrossRefGoogle Scholar
  58. 58.
    Danaei G, Finucane MM, Lu Y et al (2011) National, regional, and global trends in fasting plasma glucose and diabetes prevalence since 1980: systematic analysis of health examination surveys and epidemiological studies with 370 country-years and 2.7 million participants. Lancet 378:31–40PubMedCrossRefGoogle Scholar
  59. 59.
    Kautzky-Willer A (2013) Genderaspekte. In: Griebler R, Geißler W, Winkler P (Hrsg) Zivilisationskrankheit Diabetes: Ausprägungen – Lösungsansätze – Herausforderungen. Österreichischer Diabetesbericht 2013. Bundesministerium für Gesundheit, Wien, S 64–65Google Scholar
  60. 60.
    Kautzky-Willer A, Dorner T, Jensby A et al (2012) Women show a closer association between educational level and hypertension or diabetes mellitus than males: a secondary analysis from the Austrian HIS. BMC Public Health 12:392PubMedCentralPubMedCrossRefGoogle Scholar
  61. 61.
    Kurotani K, Nanri A, Goto A et al (2013) Red meat consumption is associated with the risk of type 2 diabetes in men but not in women: a Japan Public Health Center-based Prospective Study. Br J Nutr 110:1910–1918PubMedCrossRefGoogle Scholar
  62. 62.
    Djindjic N, Jovanovic J, Djindjic B et al (2012) Associations between the occupational stress index and hypertension, type 2 diabetes mellitus, and lipid disorders in middle-aged men and women. Ann Occup Hyg 56:1051–1062PubMedCrossRefGoogle Scholar
  63. 63.
    Manson JE, Chlebowski RT, Stefanick ML et al (2013) Menopausal hormone therapy and health outcomes during the intervention and extended poststopping phases of the Women’s Health Initiative randomized trials. JAMA 310:1353–1368PubMedCrossRefGoogle Scholar
  64. 64.
    Traish AM, Haider A, Doros G et al (2013) Long-term testosterone therapy in hypogonadal men ameliorates elements of the metabolic syndrome: an observational, long-term registry study. Int J Clin Pract 68:314–329Google Scholar
  65. 65.
    Vigen R, O’donnell CI, Baron AE et al (2013) Association of testosterone therapy with mortality, myocardial infarction, and stroke in men with low testosterone levels. JAMA 310:1829–1836PubMedCrossRefGoogle Scholar
  66. 66.
    Kautzky-Willer A, Weitgasser R, Fasching P et al (2012) Geschlechtsspezifische Aspekte für die klinische Praxis bei Prädiabetes und Diabetes mellitus. Wien Klin Wochenschr 124(Suppl 2):91–96PubMedCrossRefGoogle Scholar
  67. 67.
    Kautzky-Willer A, Handisurya A (2009) Metabolic diseases and associated complications: sex and gender matter! Eur J Clin Invest 39:631–648PubMedCrossRefGoogle Scholar
  68. 68.
    Hirsch IB, Xu Y, Davis KL et al (2011) Patient factors associated with glucagonlike peptide 1 receptor agonist use with and without insulin. Endocr Pract 17:707–716PubMedCrossRefGoogle Scholar
  69. 69.
    Thurner S, Klimek P, Szell M et al (2013) Quantification of excess risk for diabetes for those born in times of hunger, in an entire population of a nation, across a century. Proc Natl Acad Sci U S A 110:4703–4707PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Endokrinologie und Stoffwechsel, Gender Medicine Unit, Universitätsklinik für Innere Medizin IIIMedizinische Universität WienWienÖsterreich

Personalised recommendations