Wichtige, durch Vektoren übertragene Infektionskrankheiten beim Menschen in Deutschland

Epidemiologische Aspekte
  • C. Frank
  • M. Faber
  • W. Hellenbrand
  • H. Wilking
  • K. Stark
Leitthema

Zusammenfassung

Humanpathogene, vektorübertragene Infektionserreger spielen für Deutschland eine bedeutende Rolle. Die endemischen, zoonotischen Infektionserreger sind entweder bundesweit verbreitet (Borrelia burgdorferi sensu latu) oder kommen in bestimmten geografischen Regionen vor (FSME-Viren, Hantaviren). Sie verursachen eine erhebliche Krankheitslast. Ihre Prävention und Kontrolle beruhen im Wesentlichen auf Aufklärung und persönlichen Schutzmaßnahmen (FSME-Impfung, Schutz vor Vektoren). Eine gute Surveillance, ergänzt um gezielte epidemiologische Studien, ist Voraussetzung zur Bewertung der räumlich-zeitlichen Infektionsrisiken und der Wirksamkeit von Präventionsmaßnahmen. Neben den endemischen Erregern müssen die importierten, durch Vektoren – zumeist Mücken – übertragenen Erreger im Rahmen der Surveillance-Aktivitäten ebenfalls systematisch und intensiv beobachtet werden, zum einen, um das Risiko für Reisende aus Deutschland einschätzen zu können, zum anderen, um das Risiko einer möglichen autochthonen Übertragung adäquat bewerten zu können. Hierbei sind weitere Faktoren zu berücksichtigen (Etablierung von invasiven Mückenarten in Deutschland, zunehmende Erwärmung). Unter diesen Erregern sind vor allem das West-Nil-Virus, das Denguevirus, das Chikungunyavirus und der Malariaerreger (Plasmodien) zu nennen. Im vorliegenden Beitrag geben wir einen Überblick über die epidemiologische Situation bei ausgewählten, für Deutschland besonders relevanten, durch Vektor-übertragene Erreger ausgelösten Infektionskrankheiten.

Schlüsselwörter

Vektor-übertragene Infektionen Surveillance Epidemiologie Prävention Mücken 

Important vector-borne infectious diseases among humans in Germany

Epidemiological aspects

Abstract

Vector-borne infections pathogenic to humans play an important role in Germany. The relevant zoonotic pathogens are either endemic throughout Germany (e.g. Borrelia burgdorferi sensu latu) or only in specific regions, e.g. tick-borne encephalitis (TBE) virus and hantavirus. They cause a substantial burden of disease. Prevention and control largely rely on public advice and the application of personal protective measures (e.g. TBE virus vaccination and protection against vectors). High quality surveillance and targeted epidemiological studies are fundamental for the evaluation of temporal and spatial risks of infection and the effectiveness of preventive measures. Aside from endemic pathogens, vector-borne infections acquired abroad, mostly transmitted by mosquitoes, have to be systematically and intensively monitored as well, to assess the risk of infection for German residents traveling abroad and to adequately evaluate the risk of autochthonous transmission. Related issues, such as invasive species of mosquitoes in Germany and climate change, have to be taken into consideration. Such pathogens include West Nile, dengue and chikungunya viruses, as well as malaria parasites (Plasmodium species). The article presents an overview of the epidemiological situation of selected relevant vector-borne infections in Germany.

Keywords

Vector-borne infections Surveillance Epidemiology Prevention Mosquitoes 

Literatur

  1. 1.
    White NJ, Pukrittayakamee S, Hien TT et al (2013) Malaria. Lancet 383:723–735PubMedCrossRefGoogle Scholar
  2. 2.
    Robert Koch-Institut (2013) Infektionsepidemiologisches Jahrbuch meldepflichtiger Krankheiten für 2012. BerlinGoogle Scholar
  3. 3.
    Stark K, Schoneberg I (2012) Increase in malaria cases imported from Pakistan to Germany in 2012. Euro Surveill 17:pii:20320Google Scholar
  4. 4.
    Kronefeld M, Dittmann M, Zielke D et al (2012) Molecular confirmation of the occurrence in Germany of Anopheles daciae (Diptera, Culicidae). Parasit Vectors 5:250PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Weitzel T, Gauch C, Becker N (2012) Identification of Anopheles daciae in Germany through ITS2 sequencing. Parasitol Res 111:2431–2438PubMedCrossRefGoogle Scholar
  6. 6.
    Krüger A, Rech A, Su XZ, Tannich E (2001) Two cases of autochthonous Plasmodium falciparum malaria in Germany with evidence for local transmission by indigenous Anopheles plumbeus. Trop Med Int Health 6:983–985PubMedCrossRefGoogle Scholar
  7. 7.
    Simmons CP, Farrar JJ, Nguyen vV, Wills B (2012) Dengue. N Engl J Med 366:1423–1432PubMedCrossRefGoogle Scholar
  8. 8.
    Guzman MG, Alvarez M, Halstead SB (2013) Secondary infection as a risk factor for dengue hemorrhagic fever/dengue shock syndrome: an historical perspective and role of antibody-dependent enhancement of infection. Arch Virol 158:1445–1459PubMedCrossRefGoogle Scholar
  9. 9.
    Wagner D, With K de, Huzly D et al (2004) Nosocomial acquisition of dengue. Emerg Infect Dis 10:1872–1873PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Schmidt-Chanasit J, Haditsch M, Schoneberg I et al (2010) Dengue virus infection in a traveller returning from Croatia to Germany. Euro Surveill 15:pii: 19677Google Scholar
  11. 11.
    Gould EA, Gallian P, De Lamballerie X, Charrel RN (2010) First cases of autochthonous dengue fever and chikungunya fever in France: from bad dream to reality! Clin Microbiol Infect 16:1702–1704PubMedCrossRefGoogle Scholar
  12. 12.
    European Centre for Disease Prevention and Control (ECDC) (2013) VBORNET maps – mosquitoes. Aedes albopictus – Current known distribution: March 2013. http://ecdc.europa.eu/en/activities/diseaseprogrammes/emerging_and_vector_borne_diseases/PublishingImages/aedes-albopictus-maps-distribution-march-2013-high-res.jpgGoogle Scholar
  13. 13.
    Governo Regional da Madeira – Instituto de Administração da Saúde e Assuntos Sociais (2013) Communicado do Director-Geral da Saúde. Surto de dengue na Ilha da Madeira – situação em 19 de maio de 2013 (auf Portugiesisch, verfügbar unter http://www.dgs.pt/?cn=683368347243AAAAAAAAAAAA)Google Scholar
  14. 14.
    Frank C, Hohle M, Stark K, Lawrence J (2013) More reasons to dread rain on vacation? Dengue fever in 42 German and United Kingdom Madeira tourists during autumn 2012. Euro Surveill 18:20446PubMedGoogle Scholar
  15. 15.
    Almeida AP, Goncalves YM, Novo MT et al (2007) Vector monitoring of Aedes aegypti in the Autonomous Region of Madeira, Portugal. Euro Surveill 12:E071115 071116PubMedGoogle Scholar
  16. 16.
    Bundesrepublik Deutschland (2001) Infektionsschutzgesetz (IfSG). http://www.gesetze-im-internet.de/bundesrecht/ifsg/gesamt.pdfGoogle Scholar
  17. 17.
    Schmidt-Chanasit J, Tenner-Racz K, Poppert D et al (2012) Fatal dengue hemorrhagic fever imported into Germany. Infection 40:441–443PubMedCrossRefGoogle Scholar
  18. 18.
    Pluskota B, Storch V, Brauneck T et al (2008) First record of Stegomyia albopicta (Skuse) (Diptera: Culicidae) in Germany. Eur Mosq Bull 26:1–5Google Scholar
  19. 19.
    Becker N, Geier M, Balczun C et al (2013) Repeated introduction of Aedes albopictus into Germany, July to October 2012. Parasitol Res 112:1787–1790PubMedCrossRefGoogle Scholar
  20. 20.
    Kampen H, Kronefeld M, Zielke D, Werner D (2013) Further specimens of the Asian tiger mosquito Aedes albopictus (Diptera, Culicidae) trapped in southwest Germany. Parasitol Res 112:905–907PubMedCrossRefGoogle Scholar
  21. 21.
    Werner D, Kronefeld M, Schaffner F, Kampen H (2012) Two invasive mosquito species, Aedes albopictus and Aedes japonicus japonicus, trapped in south-west Germany, July to August 2011. Euro Surveill 17:pii: 20067Google Scholar
  22. 22.
    Fourie ED, Morrison JG (1979) Rheumatoid arthritic syndrome after chikungunya fever. S Afr Med J 56:130–132PubMedGoogle Scholar
  23. 23.
    Burt FJ, Rolph MS, Rulli NE et al (2012) Chikungunya: a re-emerging virus. Lancet 379:662–671PubMedCrossRefGoogle Scholar
  24. 24.
    Thiberville SD, Moyen N, Dupuis-Maguiraga L et al (2013) Chikungunya fever: epidemiology, clinical syndrome, pathogenesis and therapy. Antiviral Res 99:345–370PubMedCrossRefGoogle Scholar
  25. 25.
    Borgherini G, Poubeau P, Staikowsky F et al (2007) Outbreak of chikungunya on Reunion Island: early clinical and laboratory features in 157 adult patients. Clin Infect Dis 44:1401–1407PubMedCrossRefGoogle Scholar
  26. 26.
    Schwarz TF, Jager G, Gilch S et al (1996) Travel-related vector-borne virus infections in Germany. Arch Virol Suppl 11:57–65PubMedGoogle Scholar
  27. 27.
    Frank C, Schoneberg I, Stark K (2011) Trends in imported chikungunya virus infections in Germany, 2006–2009. Vector Borne Zoonotic Dis 11:631–636PubMedCrossRefGoogle Scholar
  28. 28.
    Angelini R, Finarelli AC, Angelini P et al (2007) Chikungunya in north-eastern Italy: a summing up of the outbreak. Euro Surveill 12:E071122 071122PubMedGoogle Scholar
  29. 29.
    Wheeler SS, Vineyard MP, Woods LW, Reisen WK (2012) Dynamics of West Nile virus persistence in House Sparrows (Passer domesticus). PLoS Negl Trop Dis 6:e1860PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Zou S, Foster GA, Dodd RY et al (2010) West Nile fever characteristics among viremic persons identified through blood donor screening. J Infect Dis 202:1354–1361PubMedCrossRefGoogle Scholar
  31. 31.
    Mostashari F, Bunning ML, Kitsutani PT et al (2001) Epidemic West Nile encephalitis, New York, 1999: results of a household-based seroepidemiological survey. Lancet 358:261–264PubMedCrossRefGoogle Scholar
  32. 32.
    Carson PJ, Borchardt SM, Custer B et al (2012) Neuroinvasive disease and West Nile virus infection, North Dakota, USA, 1999–2008. Emerg Infect Dis 18:684–686PubMedCentralPubMedCrossRefGoogle Scholar
  33. 33.
    Petersen LR, Brault AC, Nasci RS (2013) West Nile virus: review of the literature. JAMA 310:308–315PubMedCrossRefGoogle Scholar
  34. 34.
    Centers for Disease Control and Prevention (USA) (2013) West Nile virus disease cases and deaths reported to CDC by year and clinical presentation, 1999–2012. http://www.cdc.gov/westnile/resources/pdfs/cummulative/99_2012_CasesAndDeathsClinicalPresentationHumanCases.pdfGoogle Scholar
  35. 35.
    Robert Koch Institut (Berlin) (2001–2013) SurvNET – Datenbank der meldepflichtigen Infektionskrankheiten in DeutschlandGoogle Scholar
  36. 36.
    Schultze-Amberger J, Emmerich P, Gunther S, Schmidt-Chanasit J (2012) West Nile virus meningoencephalitis imported into Germany. Emerg Infect Dis 18:1698–1700PubMedCentralPubMedCrossRefGoogle Scholar
  37. 37.
    Gabriel M, Emmerich P, Frank C et al (2013) Increase in West Nile virus infections imported to Germany in 2012. J Clin Virol 58:587–589PubMedCrossRefGoogle Scholar
  38. 38.
    Nash D, Mostashari F, Fine A et al (2001) The outbreak of West Nile virus infection in the New York City area in 1999. N Engl J Med 344:1807–1814PubMedCrossRefGoogle Scholar
  39. 39.
    European Centre for Disease Prevention and Control (ECDC) (2013) West Nile fever maps. http://ecdc.europa.eu/en/healthtopics/west_nile_fever/West-Nile-fever-maps/Pages/index.aspxGoogle Scholar
  40. 40.
    Linke S, Muehlen M, Niedrig M et al (2008) Assessing the exposure of German and Austrian bird ringers to West Nile virus (Flavivirus) and evaluating their potential risk of infection. J Ornithol 149:271–275CrossRefGoogle Scholar
  41. 41.
    Linke S, Niedrig M, Kaiser A et al (2007) Serologic evidence of West Nile virus infections in wild birds captured in Germany. Am J Trop Med Hyg 77:358–364PubMedGoogle Scholar
  42. 42.
    Seidowski D, Ziegler U, Ronn JA von et al (2010) West Nile virus monitoring of migratory and resident birds in Germany. Vector Borne Zoonotic Dis 10:639–647PubMedCrossRefGoogle Scholar
  43. 43.
    Timmermann U, Becker N (2010) Mosquito-borne West Nile virus (WNV) surveillance in the Upper Rhine Valley, Germany. J Vector Ecol 35:140–143PubMedCrossRefGoogle Scholar
  44. 44.
    Ziegler U, Angenvoort J, Klaus C et al (2013) Use of competition ELISA for monitoring of west nile virus infections in horses in Germany. Int J Environ Res Public Health 10:3112–3120PubMedCentralPubMedCrossRefGoogle Scholar
  45. 45.
    Ziegler U, Seidowski D, Angenvoort J et al (2012) Monitoring of West Nile virus infections in Germany. Zoonoses Public Health 59(Suppl 2):95–101PubMedCrossRefGoogle Scholar
  46. 46.
    Arbeitskreis Blut (2012) West-Nil-Virus – Stellungnahmen des Arbeitskreises Blut des Bundesministeriums für Gesundheit. Bundesgesundheitsbl 55:1024–1043CrossRefGoogle Scholar
  47. 47.
    Lindquist L, Vapalahti O (2008) Tick-borne encephalitis. Lancet 371:1861–1871PubMedCrossRefGoogle Scholar
  48. 48.
    Holzmann H, Aberle SW, Stiasny K et al (2009) Tick-borne encephalitis from eating goat cheese in a mountain region of Austria. Emerg Infect Dis 15:1671–1673PubMedCentralPubMedCrossRefGoogle Scholar
  49. 49.
    Kerbo N, Donchenko I, Kutsar K (2005) Tickborne encephalitis outbreak in Estonia linked to raw goat milk, May–June 2005. Euro Surveill Wkly 10:E050623.050622. http://www.eurosurveillance.org/ew/052005/050623.asp#050622Google Scholar
  50. 50.
    Hudopisk N, Korva M, Janet E et al (2013) Tick-borne encephalitis associated with consumption of raw goat milk, Slovenia, 2012. Emerg Infect Dis 19:806–808PubMedCentralPubMedCrossRefGoogle Scholar
  51. 51.
    Caini S, Szomor K, Ferenczi E et al (2012) Tick-borne encephalitis transmitted by unpasteurised cow milk in western Hungary, September to October 2011. Euro Surveill 17:pii=20128Google Scholar
  52. 52.
    Balogh Z, Ferenczi E, Szeles K et al (2010) Tick-borne encephalitis outbreak in Hungary due to consumption of raw goat milk. J Virol Methods 163:481–485PubMedCrossRefGoogle Scholar
  53. 53.
    Süss J (2011) Tick-borne encephalitis 2010: epidemiology, risk areas, and virus strains in Europe and Asia – an overview. Ticks Tick Borne Dis 2:2–15PubMedCrossRefGoogle Scholar
  54. 54.
    Heymann DL (2008) Control of communicable diseases manual. American Public Health Association, Washington, D.C.Google Scholar
  55. 55.
    WHO (2011) Vaccines against tick-borne encephalitis: WHO position paper. Wkly Epidemiol Rec 86:241–256Google Scholar
  56. 56.
    Růžek D, Dobler G, Mantke OD (2010) Tick-borne encephalitis: Pathogenesis and clinical implications. Travel Med Infectious Disease 8:223–232CrossRefGoogle Scholar
  57. 57.
    Kaiser R (2000) Epidemiologie und Verlauf der Frühsommer-Meningoenzephalitis in Baden-Württemberg zwischen 1994 und 1999. Dtsch Med Wochenschr 125:1147–1153PubMedCrossRefGoogle Scholar
  58. 58.
    Kaiser R (2002) Tick-borne encephalitis (TBE) in Germany and clinical course of the disease. Int J Med Microbiol 291:58–61PubMedCrossRefGoogle Scholar
  59. 59.
    Kaiser R (2004) Frühsommer-Meningoenzephalitis. Prognose für Kinder und Jugendliche günstiger als für Erwachsene. Dtsch Ärztebl 101:C1822–C1826Google Scholar
  60. 60.
    Kaiser R (2006) Frühsommermeningoenzephalitis im Kindes- und Jugendalter. Eine prospektive Studie über 10 Jahre in Baden-Württemberg und Südhessen. Monatsschr Kinderheilkd 154:1111–1115CrossRefGoogle Scholar
  61. 61.
    Heinz FX, Holzmann H, Essl A, Kundi M (2007) Field effectiveness of vaccination against tick-borne encephalitis. Vaccine 25:7559–7567PubMedCrossRefGoogle Scholar
  62. 62.
    Heinz FX, Stiasny K, Holzmann H et al (2013) Vaccination and tick-borne encephalitis, central Europe. Emerg Infect Dis 19:69–76PubMedCentralPubMedCrossRefGoogle Scholar
  63. 63.
    STIKO (2012) Mitteilung der Ständigen Impfkommission am Robert Koch-Institut (RKI). Empfehlungen der Ständigen Impfkommission (STIKO) am Robert Koch-Institut/Stand: Juli 2012. Epidemiol Bull 30:283–310Google Scholar
  64. 64.
    Robert Koch-Institut (2013) FSME: Risikogebiete in Deutschland (Stand: Mai 2013) Bewertung des örtlichen Erkrankungsrisikos. Epidemiol Bull 18:151–162Google Scholar
  65. 65.
    Robert Koch-Institut (2007) Risikogebiete der Frühsommer-Meningoenzephalitis (FSME) in Deutschland. Epidemiol Bull 15:119–135Google Scholar
  66. 66.
    Randolph S, Miklisová D, Lysy J et al (1999) Incidence from coincidence: patterns of tick infestations on rodents facilitate transmission of tick-borne encephalitis virus. Parasitology 118:177–186PubMedCrossRefGoogle Scholar
  67. 67.
    Randolph SE, Storey K (1999) Impact of microclimate on immature tick-rodent host interactions (Acari: Ixodidae): implications for parasite transmission. J Med Entomol 36:741–748PubMedGoogle Scholar
  68. 68.
    Robert Koch-Institut (2010) Zur Situation bei wichtigen Infektionskrankheiten in Deutschland Lyme-Borreliose: Analyse der gemeldeten Erkrankungsfälle der Jahre 2007 bis 2009 aus den sechs östlichen Bundesländern. Epidemiol Bull 12:101–107Google Scholar
  69. 69.
    Stefanoff P, Pfeffer M, Hellenbrand W et al (2013) Virus detection in questing ticks is not a sensitive indicator for risk assessment of tick-borne encephalitis in humans. Zoonoses Public Health 60:215–226PubMedCrossRefGoogle Scholar
  70. 70.
    Süss J, Sinnecker H, Sinnecker R et al (1992) Epidemiology and ecology of tick-borne encephalitis in the eastern part of Germany between 1960 and 1990 and studies on the dynamics of a natural focus of tick-borne encephalitis. Zentralbl Bakteriol 277:224–235PubMedCrossRefGoogle Scholar
  71. 71.
    Fingerle V, Schulte-Spechtel UC, Ruzic-Sabljic E et al (2008) Epidemiological aspects and molecular characterization of Borrelia burgdorferi s.l. from southern Germany with special respect to the new species Borrelia spielmanii sp. nov. Int J Med Microbiol 298:279–290PubMedCrossRefGoogle Scholar
  72. 72.
    Gray JS, Kahl O, Robertson JN et al (1998) Lyme borreliosis habitat assessment. Zentralbl Bakteriol 287:211–228PubMedCrossRefGoogle Scholar
  73. 73.
    Matuschka FR, Heiler M, Eiffert H et al (1993) Diversionary role of hoofed game in the transmission of Lyme disease spirochetes. Am J Trop Med Hyg 48:693–699PubMedGoogle Scholar
  74. 74.
    Rauter C, Hartung T (2005) Prevalence of Borrelia burgdorferi sensu lato genospecies in Ixodes ricinus Ticks in Europe: a meta analysis. Appl Environ Microbiol 71:7203–7216PubMedCentralPubMedCrossRefGoogle Scholar
  75. 75.
    Stanek G, Wormser GP, Gray J, Strle F (2012) Lyme borreliosis. Lancet 379:461–473PubMedCrossRefGoogle Scholar
  76. 76.
    Strle F, Stanek G (2009) Clinical manifestations and diagnosis of lyme borreliosis. Curr Probl Dermatol 37:51–110PubMedCrossRefGoogle Scholar
  77. 77.
    Stanek G, Fingerle V, Hunfeld KP et al (2011) Lyme borreliosis: clinical case definitions for diagnosis and management in Europe. Clin Microbiol Infect 17:69–79PubMedCrossRefGoogle Scholar
  78. 78.
    Dehnert M, Fingerle V, Klier C et al (2012) Seropositivity of lyme borreliosis and associated risk factors: a population-based study in children and adolescents in Germany (KiGGS). PLoS One 7:e41321PubMedCentralPubMedCrossRefGoogle Scholar
  79. 79.
    Müller I, Freitag MH, Poggensee G et al (2012) Evaluating frequency, diagnostic quality, and cost of Lyme borreliosis testing in Germany: a retrospective model analysis. Clin Dev Immunol 2012:595427PubMedCentralPubMedCrossRefGoogle Scholar
  80. 80.
    Rizzoli A, Hauffe H, Carpi G et al (2011) Lyme borreliosis in Europe. Euro Surveill 16:pii: 19906Google Scholar
  81. 81.
    RKI (2010) Lyme-Borreliose: Analyse der gemeldeten Erkrankungsfälle der Jahre 2007 bis 2009 aus den sechs östlichen Bundesländern. Epid Bull 12:101–107Google Scholar
  82. 82.
    Wilking H, Stark K (2014) Trends in surveillance data of human Lyme borreliosis from six federal states in eastern Germany, 2009–2012. Ticks Tick Borne Dis 5:219–224PubMedCrossRefGoogle Scholar
  83. 83.
    RKI (2012) Seroprävalenz der Lyme-Borreliose bei Kindern und Jugendlichen in Deutschland. Epidemiol Bull 14:113–120Google Scholar
  84. 84.
    RKI (2007) Ratgeber Infektionskrankheiten Lyme-Borreliose. Epidemiol Bull 17:147–150CrossRefGoogle Scholar
  85. 85.
    Vaheri A, Henttonen H, Voutilainen L et al (2013) Hantavirus infections in Europe and their impact on public health. Rev Med Virol 23:35–49PubMedCrossRefGoogle Scholar
  86. 86.
    Krüger DH, Ulrich RG, Hofmann J (2013) Hantaviruses as zoonotic pathogens in Germany. Dtsch Arztebl Int 110:461–467PubMedCentralPubMedGoogle Scholar
  87. 87.
    Jonsson CB, Figueiredo LT, Vapalahti O (2010) A global perspective on hantavirus ecology, epidemiology, and disease. Clin Microbiol Rev 23:412–441PubMedCentralPubMedCrossRefGoogle Scholar
  88. 88.
    Abu Sin M, Stark K, Treeck U van et al (2007) Risk factors for hantavirus infection in Germany, 2005. Emerg Infect Dis 13:1364–1366Google Scholar
  89. 89.
    Winter CH, Brockmann SO, Piechotowski I et al (2009) Survey and case-control study during epidemics of Puumala virus infection. Epidemiol Infect 137:1479–1485PubMedCrossRefGoogle Scholar
  90. 90.
    Essbauer S, Schmidt J, Conraths FJ et al (2006) A new Puumala hantavirus subtype in rodents associated with an outbreak of nephropathia epidemica in South-East Germany in 2004. Epidemiol Infect 134:1333–1344PubMedCentralPubMedCrossRefGoogle Scholar
  91. 91.
    Hofmann J, Meisel H, Klempa B et al (2008) Hantavirus outbreak, Germany, 2007. Emerg Infect Dis 14:850–852PubMedCentralPubMedCrossRefGoogle Scholar
  92. 92.
    Ulrich R, Meisel H, Schutt M et al (2004) Prevalence of hantavirus infections in Germany. Bundesgesundheitsbl Gesundheitsforsch Gesundheitsschutz 47:661–670Google Scholar
  93. 93.
    Faber MS, Ulrich RG, Frank C et al (2010) Steep rise in notified hantavirus infections in Germany, April 2010. Euro Surveill 15:pii: 19574Google Scholar
  94. 94.
    Faber M, Wollny T, Schlegel M et al (2013) Puumala virus outbreak in Western Thuringia, Germany, 2010: epidemiology and strain identification. Zoonoses Public Health 60:549–554PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • C. Frank
    • 1
  • M. Faber
    • 1
  • W. Hellenbrand
    • 1
  • H. Wilking
    • 1
  • K. Stark
    • 1
  1. 1.Robert Koch-Institut, FG35BerlinDeutschland

Personalised recommendations