Effektivität, Populationseffekte und Gesundheitsökonomie der Impfungen gegen Masern und Röteln

Leitthema

Zusammenfassung

Seit mehreren Jahrzehnten gehört die Impfung gegen Masern und Röteln zum Standard der meisten nationalen Impfprogramme. Im vorliegenden Übersichtsbeitrag sollen die Evidenz für die Effektivität der beiden Impfungen auf Basis veröffentlichter systematischer Reviews dargestellt sowie die epidemiologischen und gesundheitsökonomischen Gesamteffekte der Impfung auf Bevölkerungsebene beschrieben werden. Zahlreiche epidemiologische Beobachtungsstudien belegen die gute Effektivität (> 90 %) beider Impfungen. Die Reduktion der weltweiten Maserntodesfälle sowie die dramatische Reduktion der Masern- und Rötelnkrankheitsinzidenz nach Einführung der Impfungen tragen zu einer sehr hohen Qualität der Evidenz bei. Die Länder des amerikanischen Kontinents konnten beweisen, dass durch sehr hohe Impfquoten in einem Routineimpfprogramm mit 2 Masern/Röteln-Impfdosen und mit zusätzlichen Impfaktivitäten zur Schließung von Immunitätslücken in höheren Altersgruppen eine Eliminierung beider Erkrankungen möglich ist. Eine gesundheitsökonomische Evaluation der Masern- bzw. Rötelnimpfung speziell für Deutschland gibt es nicht. Im Rahmen eines eigenen systematischen Reviews wurden jedoch 11 gesundheitsökonomische Studien aus anderen Industrieländern und eine für ein hypothetisches Industrieland identifiziert. In allen wurden sowohl der Masern- als auch der Rötelnimpfung stets ein kosteneffektives und teils sogar ein kostensparendes Potenzial zugerechnet, sodass dieses mit Einschränkungen auch für Deutschland anzunehmen ist. Zusammenfassend besteht ausreichend Evidenz für die hohe Effektivität der beiden Impfungen, mit denen die Masern- und Rötelneliminierung machbar ist, sofern eine adäquate Impfstrategie umgesetzt wird. In Deutschland sind dazu breit angelegte und koordinierte Maßnahmen zu Nachholimpfungen unter Kindern, Jugendlichen und jungen Erwachsenen speziell in den westlichen Bundesländern dringend notwendig.

Schlüsselwörter

Masern Röteln Impfung Wirksamkeit Kosteneffektivität 

Effectiveness, population-level effects, and heath economics of measles and rubella vaccination

Abstract

Vaccination against measles and rubella has been included in national immunization programs worldwide for several decades. In this article, we present the evidence related to the effectiveness of measles and rubella vaccination based on published systematic reviews, and we describe the epidemiological and health economic effects of vaccination at a population level. Several observational studies demonstrate the high effectiveness (> 90 %) of both measles and rubella vaccination. The global measles mortality reduction and the dramatic decrease in rubella and measles incidences after introduction of routine immunization contribute to the very high quality of evidence. The countries of the Americas have proved that it is feasible to eliminate measles and rubella by strengthening infant immunization through routine vaccination services and by conducting supplemental immunization activities in other childhood age groups so as to close immunity gaps. An economic evaluation of measles and rubella vaccination specifically for the healthcare system in Germany does not exist. However, we conducted a systematic review and identified 11 health-economic studies from other industrialized countries and one for a hypothetical industrialized country. Results indicate that vaccination against measles and rubella had either a cost-effective or even a cost-saving potential, which could be assumed with some limitations also for the German setting. In conclusion, there is compelling evidence that the available vaccines are very effective and that measles and rubella elimination is feasible if adequate vaccination strategies are implemented. In Germany, catch-up vaccination programs are urgently needed for children, adolescents, and young adults specifically in the western federal states.

Keywords

Measles Rubella Vaccination Effectiveness Cost-effectiveness 

Literatur

  1. 1.
    Plotkin S, Orenstein W, Offit P (2012) Vaccines. Elsevier, PhiladelphiaGoogle Scholar
  2. 2.
    Andrus JK, Quadros CA de, Solorzano CC et al (2011) Measles and rubella eradication in the Americas. Vaccine 29(Suppl 4):D91–D96CrossRefPubMedGoogle Scholar
  3. 3.
    Simons E, Ferrari M, Fricks J et al (2012) Assessment of the 2010 global measles mortality reduction goal: results from a model of surveillance data. Lancet 379:2173–2178CrossRefPubMedGoogle Scholar
  4. 4.
    World-Health-Organization (2011) Rubella vaccines: WHO position paper. Releve epidemiologique hebdomadaire/Section d’hygiene du Secretariat de la Societe des Nations = Weekly epidemiological record/Health Section of the Secretariat of the League of Nations 86:301–316Google Scholar
  5. 5.
    World Health Organization (2012) Global measles and rubella strategic plan: 2012–2020. World Health Organization, GenfGoogle Scholar
  6. 6.
    Demicheli V, Rivetti A, Debalini MG, Di Pietrantonj C (2012) Vaccines for measles, mumps and rubella in children. Cochrane Database Syst Rev 2:CD004407PubMedGoogle Scholar
  7. 7.
    Uzicanin A, Zimmerman L (2011) Field effectiveness of live attenuated measles-containing vaccines: a review of published literature. J Infect Dis 204(Suppl 1):S133–S148CrossRefPubMedGoogle Scholar
  8. 8.
    Beutels P, Gay NJ (2003) Economic evaluation of options for measles vaccination strategy in a hypothetical Western European country. Epidemiol Infect 130:273–283CrossRefPubMedGoogle Scholar
  9. 9.
    Just M (1978) Rentiert die Masern- und/oder Mumps-Impfung für schweizerische VErhältnisse? Schweiz Med Wochenschr 108Google Scholar
  10. 10.
    Miller MA, Redd S, Hadler S, Hinman A (1998) A model to estimate the potential economic benefits of measles eradication for the United States. Vaccine 16:1917–1922CrossRefPubMedGoogle Scholar
  11. 11.
    Pelletier L, Chung P, Duclos P et al (1998) A benefit-cost analysis of two-dose measles immunization in Canada. Vaccine 16:989–996CrossRefPubMedGoogle Scholar
  12. 12.
    Takahashi K, Ohkusa Y, Kim J-Y (2011) The economic disease burden of measles in Japan and a benefit cost analysis of vaccination, a retrospective study. BMC Health Serv Res 11:254PubMedCentralCrossRefPubMedGoogle Scholar
  13. 13.
    White CC, Koplan JP, Orenstein WA (1985) Benefits, risks and costs of immunization for measles, mumps and rubella. Am J Public Health 75:739–744CrossRefPubMedGoogle Scholar
  14. 14.
    Zhou F, Reef S, Massoudi M et al (2004) An economic analysis of the current universal 2-dose measles-mumps-rubella vaccination program in the United States. J Infect Dis 189(Suppl 1):S131–S145CrossRefPubMedGoogle Scholar
  15. 15.
    Wiedermann G, Ambrosch F (1979) Costs and benefits of measles and mumps immunization in Austria. Bull World Health Organ 57:625–629PubMedCentralPubMedGoogle Scholar
  16. 16.
    Bjerregaard P (1991) Economic analysis of immunization programmes. Scand J Soc Med Suppl 46:115–119PubMedGoogle Scholar
  17. 17.
    Chapalain MT (1978) Perinatality: French cost-benefit studies and decisions on handicap and prevention. Ciba Found Symp 193–206Google Scholar
  18. 18.
    Elo O (1979) Cost-benefit studies of vaccinations in Finland. Developments in biological standardization 43:419–428PubMedGoogle Scholar
  19. 19.
    Schoenbaum SC, Hyde JNJBL, Crampton K (1976) Benefit-cost analysis of rubella vaccination policy. N Engl J Med 294:306–310CrossRefPubMedGoogle Scholar
  20. 20.
    Stray-Pedersen B (1982) Economic evaluation of different vaccination programmes to prevent congenital rubella. NIPH Ann 5:69–83PubMedGoogle Scholar
  21. 21.
    Halloran ME, Struchiner CJ, Longini IM Jr (1997) Study designs for evaluating different efficacy and effectiveness aspects of vaccines. Am J Epidemiol 146:789–803CrossRefPubMedGoogle Scholar
  22. 22.
    Chen RT, Orenstein WA (1996) Epidemiologic methods in immunization programs. Epidemiol Rev 18:99–117CrossRefPubMedGoogle Scholar
  23. 23.
    Orenstein WA, Bernier RH, Dondero TJ et al (1985) Field evaluation of vaccine efficacy. Bull World Health Organ 63:1055–1068PubMedCentralPubMedGoogle Scholar
  24. 24.
    Kunz R, Ollenschläger G, Raspe HH et al (2007) Lehrbuch für Evidenzbasierte Medizin in Klinik und Praxis. Deutscher Ärzte-Verlag, KölnGoogle Scholar
  25. 25.
    Farrington CP (1993) Estimation of vaccine effectiveness using the screening method. Int J Epidemiol 22:742–746CrossRefPubMedGoogle Scholar
  26. 26.
    Weinberg GA, Szilagyi PG (2010) Vaccine epidemiology: efficacy, effectiveness, and the translational research roadmap. J Infect Dis 201:1607–1610CrossRefPubMedGoogle Scholar
  27. 27.
    Salisbury DM, Beverley PCL, Miller E (2002) Vaccine programmes and policies. Br Med Bull 62:201–211CrossRefPubMedGoogle Scholar
  28. 28.
    Briggs A, Claxton K, Sculpher M (2008) Decision modelling for health economic evaluation. Oxford University Press, OxfordGoogle Scholar
  29. 29.
    Siebert U, Mühlberger N, Schöffski O (2008) Evidenzsynthese: meta-Analysen und Entscheidungsanalysen. In: Schöffski O, von der Schulenburg JM (Hrsg) Gesundheitsökonomische Evaluation. Springer, Berlin Heidelberg New York Tokyo, S 261–310Google Scholar
  30. 30.
    Beutels P, Van Doorslaer E, Van Damme P, Hall J (2003) Methodological issues and new developments in the economic evaluation of vaccines. Expert Rev Vaccines 2:649–660CrossRefPubMedGoogle Scholar
  31. 31.
    Pitzer VE, Viboud C, Lopman BA et al (2011) Influence of birth rates and transmission rates on the global seasonality of rotavirus incidence. J R Soc Interface 8:1584–1593PubMedCentralCrossRefPubMedGoogle Scholar
  32. 32.
    Sugerman DE, Barskey AE, Delea MG et al (2010) Measles outbreak in a highly vaccinated population, San Diego, 2008: role of the intentionally undervaccinated. Pediatrics 125:747–755CrossRefPubMedGoogle Scholar
  33. 33.
    De Serres G, Gay NJ, Farrington CP (2000) Epidemiology of transmissible diseases after elimination. Am J Epidemiol 151:1039–1048 (discussion 1049–1052)CrossRefGoogle Scholar
  34. 34.
    Icks A, Chernyak N, Bestehorn K et al (2010) Methoden der gesundheitsökonomischen Evaluation in der Versorgungsforschung. GesundheitswesenGoogle Scholar
  35. 35.
    Garrison LP, Bauch CT, Bresnahan BW et al (2011) Using cost-effectiveness analysis to support research and development portfolio prioritization for product innovations in measles vaccination. J Infect Dis 204:S124–S132CrossRefPubMedGoogle Scholar
  36. 36.
    IQWiG (2009) Cost estimation – working paper, Version 1.0. Gesundheitswesen IfQuWi (Hrsg) Institut für Qualität und Wirtschaftlichkeit im Gesundheitswesen CologneGoogle Scholar
  37. 37.
    Drummond M, Chevat C, Lothgren M (2007) Do we fully understand the economic value of vaccines? Vaccine 25:5945–5957CrossRefPubMedGoogle Scholar
  38. 38.
    Schöffski O (2008) Grundformen gesundheitsökonomischer Evaluationen. In: Schöffski O, von der Schulenburg JM (Hrsg) Gesundheitsökonomische Evaluation. Springer, Berlin Heidelberg New York Tokyo, S 65–92Google Scholar
  39. 39.
    Raftery JP (2008) Paying for costly pharmaceuticals: regulation of new drugs in Australia, England and New Zealand. Med J Aust 188:26–28PubMedGoogle Scholar
  40. 40.
    NICE (2008) National Institute for Health and Clinical Excellence: guide to the methods of technology appraisal. In: System NH (Hrsg)Google Scholar
  41. 41.
    Arenz S, Schmitt HJ, Tischer A, Kries R von (2005) Effectiveness of measles vaccination after household exposure during a measles outbreak: a household contact study in Coburg, Bavaria. Pediatr Infect Dis J 24:697–699CrossRefPubMedGoogle Scholar
  42. 42.
    Wichmann O, Hellenbrand W, Sagebiel D et al (2007) Large measles outbreak at a German public school, 2006. Pediatr Infect Dis J 26:782–786CrossRefPubMedGoogle Scholar
  43. 43.
    Beasley RP, Detels R, Kim KS et al (1969) Prevention of rubella during an epidemic on Taiwan. HPV-77 and RA 27–3 rubella vaccines administered subcutaneously and intranasally HPV-77 vaccine mixed with mumps and-or measles vaccines. Am J Dis Child 118:301–306CrossRefPubMedGoogle Scholar
  44. 44.
    Davidkin I, Kontio M, Paunio M, Peltola H (2010) MMR vaccination and disease elimination: the Finnish experience. Expert Rev Vaccines 9:1045–1053CrossRefPubMedGoogle Scholar
  45. 45.
    Pöhn HP, Rasch G (1994) Statistik meldepflichtiger übertragbarer Krankheiten: Vom Beginn der Aufzeichnungen bis heute (Stand 31. Dezember 1989). MMV Medizin, MünchenGoogle Scholar
  46. 46.
    Klein S, Schoneberg I, Krause G (2012) The historical development of immunization in Germany. From compulsory smallpox vaccination to a National Action Plan on Immunization. Bundesgesundheitsbl Gesundheitsforsch Gesundheitsschutz 55:1512–1523CrossRefGoogle Scholar
  47. 47.
    Siedler A, Mankertz A, Feil F et al (2011) Closer to the goal: efforts in measles elimination in Germany 2010. J Infect Dis 204(Suppl 1):S373–S380CrossRefPubMedGoogle Scholar
  48. 48.
    Bonacic Marinovic AA, Swaan C, Wichmann O et al (2012) Effectiveness and timing of vaccination during school measles outbreak. Emerg Infect Dis 18:1405–1413CrossRefGoogle Scholar
  49. 49.
    Carabin H, Edmunds WJ, Gyldmark M et al (2003) The cost of measles in industrialised countries. Vaccine 21:4167–4177CrossRefPubMedGoogle Scholar
  50. 50.
    Rosian-Schikuta I, Fröschl B, Habl C, Stürzliner H (2007) Die Masern-Mumps-Röteln-Impfung aus gesundheitspolitischer und ökonomischer Sicht (2007). In: (DIMDI) DIfMDuI (Hrsg) Health technology assessment, Bd 62Google Scholar
  51. 51.
    Welte R, Feenstra T, Jager H, Leidl R (2004) A decision chart for assessing and improving the transferability of economic evaluation results between countries. Pharmacoeconomics 22:857–876CrossRefPubMedGoogle Scholar
  52. 52.
    Marolla F, Baviera G, Cacciapuoti et al (1998) A field study on vaccine efficacy against mumps of three MMR vaccines [Efficacia verso la parotite di tre diversi vaccini a tripla componente: studio sul campo]. Riv Ital Pediatr 24:466–472Google Scholar
  53. 53.
    Ong G, Rasidah N, Wan S, Cutter J (2007) Outbreak of measles in primary school students with high first dose MMR vaccination coverage. Singapore Med J 48:656–661PubMedGoogle Scholar
  54. 54.
    Marin M, Nguyen HQ, Langidrik JR et al (2006) Measles transmission and vaccine effectiveness during a large outbreak on a densely populated island: implications for vaccination policy. Clin Infect Dis 42:315–319CrossRefPubMedGoogle Scholar
  55. 55.
    Grayston JT, Detels R, Chen KP et al (1969) Field trial of live attenuated rubella virus vaccine during an epidemic on Taiwan. Preliminary report of efficacy of three HPV-77 strain vaccines in the prevention of clinical rubella. JAMA 207:1107–1110CrossRefPubMedGoogle Scholar
  56. 56.
    Chang TW, Des Rosiers S, Weinstein L (1970) Clinical and serologic studies of an outbreak of rubella in a vaccinated population. N Engl J Med 283:246–248CrossRefPubMedGoogle Scholar
  57. 57.
    Furukawa T, Miyata T, Kondo K et al (1970) Rubella vaccination during an epidemic. JAMA 213:987–990CrossRefPubMedGoogle Scholar
  58. 58.
    Davis WJ, Larson HE, Simsarian JP et al (1971) A study of rubella immunity and resistance to infection. JAMA 215:600–608CrossRefPubMedGoogle Scholar
  59. 59.
    Landrigan PJ, Stoffels MA, Anderson E, Witte JJ (1974) Epidemic rubella in adolescent boys. Clinical features and results of vaccination. JAMA 227:1283–1287CrossRefPubMedGoogle Scholar
  60. 60.
    Greaves WL, Orenstein WA, Hinman AR, Nersesian WS (1983) Clinical efficacy of rubella vaccine. Pediatr Infect Dis 2:284–286CrossRefPubMedGoogle Scholar
  61. 61.
    Strassburg MA, Greenland S, Stephenson TG et al (1985) Clinical effectiveness of rubella vaccine in a college population. Vaccine 3:109–112CrossRefPubMedGoogle Scholar
  62. 62.
    Valk H de, Rebière I (1998) Epidémie de rubéole: Evaluation de l’effi cacité vaccinale sur le terrain, Ardèche, janvier mars 1997. Réseau National de santé Publique, Saint Maurice, France, 1–52Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Fachgebiet Impfprävention, Abteilung für InfektionsepidemiologieRobert Koch-InstitutBerlinDeutschland
  2. 2.Charité Universitätsmedizin BerlinBerlinDeutschland

Personalised recommendations