Die Nutzung von Informationswertanalysen in Entscheidungen über angewandte Forschung

Der Fall des genetischen Screenings auf Hämochromatose in Deutschland
  • W.H. Rogowski
  • S.D. Grosse
  • E. Meyer
  • J. John
  • S. Palmer
Leitthema

Zusammenfassung

Angesichts der Vielzahl neuer genetischer Tests sehen sich öffentliche Geldgeber der Forderung gegenüber, in Forschung zu deren Wirksamkeit und Wirtschaftlichkeit zu investieren. Solche Untersuchungen rentieren sich aber nur, wenn die daraus gewonnenen Ergebnisse einen relevanten Einfluss auf die Versorgungspraxis haben. Eine Obergrenze für den Wert zusätzlicher Informationen, die die Entscheidungsgrundlage für die Erstattung einzelner Gentests verbessern würden, ist durch den Erwartungswert perfekter Information (Expected Value of Perfect Information, EVPI) gegeben. Die vorliegende Studie illustriert die Bedeutung des EVPI auf Grundlage einer probabilistischen Kosteneffektivitätsanalyse des Screenings auf hereditäre Hämochromatose bei Männern in Deutschland. Hier ist die Einführung eines Bevölkerungsscreenings bei Schwellenwerten von 50.000 oder 100.000 Euro pro gewonnenem Lebensjahr kaum zu empfehlen, und auch der maximal erreichbare Nutzen weiterer Forschung, die zur Revidierung dieser Entscheidung führen könnte, ist gering: Bei den genannten Schwellenwerten beträgt der EVPI 500.000 beziehungsweise 2,2 Mio. Euro. Eine Analyse des EVPI für einzelne Parameter(-gruppen) zeigt, dass Studien über die Adhärenz zur präventiven Phlebotomie den größten potenziellen Nutzen haben. Der Informationswert hängt auch von methodischen Annahmen zum Zeithorizont der Berechnung ab sowie von Szenarien zur Zahl der betroffenen Patienten und der Wirtschaftlichkeit des Screenings.

Schlüsselwörter

Informationswert Kosteneffektivität Hereditäre Hämochromatose Translationale Forschung Adhärenz 

Using value of information analysis in decision making about applied research

The case of genetic screening for hemochromatosis in Germany

Abstract

Public decision makers face demands to invest in applied research in order to accelerate the adoption of new genetic tests. However, such an investment is profitable only if the results gained from further investigations have a significant impact on health care practice. An upper limit for the value of additional information aimed at improving the basis for reimbursement decisions is given by the expected value of perfect information (EVPI). This study illustrates the significance of the concept of EVPI on the basis of a probabilistic cost-effectiveness model of screening for hereditary hemochromatosis among German men. In the present example, population-based screening can barely be recommended at threshold values of 50,000 or 100,000 Euro per life year gained and also the value of additional research which might cause this decision to be overturned is small: At the mentioned threshold values, the EVPI in the German public health care system was ca. 500,000 and 2,200,000 Euro, respectively. An analysis of EVPI by individual parameters or groups of parameters shows that additional research about adherence to preventive phlebotomy could potentially provide the highest benefit. The potential value of further research also depends on methodological assumptions regarding the decision maker’s time horizon as well as on scenarios with an impact on the number of affected patients and the cost-effectiveness of screening.

Keywords

Value of information Cost-effectiveness Hereditary hemochromatosis Translational research Adherence 

Literatur

  1. 1.
    Pohlhaus JR, Cook-Deegan RM (2008) Genomics research: world survey of public funding. BMC Genomics 9:472PubMedCrossRefGoogle Scholar
  2. 2.
    Rogowski WH, Grosse SD, Khoury MJ (2009) Challenges of translating genetic tests into clinical and public health practice. Nat Rev Genet 10:489–495PubMedCrossRefGoogle Scholar
  3. 3.
    Zerhouni EA (2005) Translational and clinical science-time for a new vision. N Engl J Med 353:1621–1623PubMedCrossRefGoogle Scholar
  4. 4.
    Khoury MJ, Gwinn M, Yoon PW et al (2007) The continuum of translation research in genomic medicine: How can we accelerate the appropriate integration of human genome discoveries into health care and disease prevention? Genet Med 9:665–674PubMedCrossRefGoogle Scholar
  5. 5.
    Rogowski WH, Landauer M, John J (2009) Entscheidungsanalytische Modellierung von Kosten pro QALY im Kontext des deutschen Sozialrechts. Gesundheitswesen 71:739–750PubMedCrossRefGoogle Scholar
  6. 6.
    Martin S, Rice N, Smith PC (2008) Does health care spending improve health outcomes? Evidence from English programme budgeting data. J Health Econ 27:826–842PubMedCrossRefGoogle Scholar
  7. 7.
    Claxton K (1999) The irrelevance of inference: a decision-making approach to the stochastic evaluation of health care technologies. J Health Econ 18:341–364PubMedCrossRefGoogle Scholar
  8. 8.
    Claxton KP, Sculpher MJ (2006) Using value of information analysis to prioritise health research: some lessons from recent UK experience. Pharmaco Econ 24:1055–1068CrossRefGoogle Scholar
  9. 9.
    Henriksson M, Lundgren F, Carlsson P (2006) Informing the efficient use of health care and health care research resources – the case of screening for abdominal aortic aneurysm in Sweden. Health Econ 15:1311–1322PubMedCrossRefGoogle Scholar
  10. 10.
    Claxton K, Ginnelly L, Sculpher M et al (2004) A pilot study on the use of decision theory and value of information analysis as part of the NHS Health Technology Assessment programme. Health Technol Assess 8:1–103, iiiPubMedGoogle Scholar
  11. 11.
    Briggs A, Claxton K, Sculpher M (2006) Decision modelling for health economic evaluation. Oxford Univ. Press, Oxford u.a.Google Scholar
  12. 12.
    Rogowski WH (2009) The cost-effectiveness of screening for hereditary hemochromatosis in Germany: a remodeling study. Med Decis Making 29:224–238PubMedCrossRefGoogle Scholar
  13. 13.
    Whitlock EP, Garlitz BA, Harris EL et al (2006) Screening for hereditary hemochromatosis: a systematic review for the U.S. preventive services task force. Ann Intern Med 145:209–223PubMedGoogle Scholar
  14. 14.
    Schmitt B, Golub RM, Green R (2005) Screening primary care patients for hereditary hemochromatosis with transferrin saturation and serum ferritin level: systematic review for the American College of Physicians. Ann Intern Med 143:522–536PubMedGoogle Scholar
  15. 15.
    Grosse SD, Rogowski WH, Ross LF et al (2010) Population screening for genetic disorders in the 21st century: evidence, economics, and ethics. Public Health Genomics 13:106–115PubMedCrossRefGoogle Scholar
  16. 16.
    Adams PC, Barton JC (2007) Haemochromatosis. Lancet 370:1855–1860PubMedCrossRefGoogle Scholar
  17. 17.
    Gagne G, Reinharz D, Laflamme N et al (2007) Hereditary hemochromatosis screening: effect of mutation penetrance and prevalence on cost-effectiveness of testing algorithms. Clin Genet 71:46–58PubMedCrossRefGoogle Scholar
  18. 18.
    Gabriel H, Stuhrmann M (2006) Leitlinie zur molekulargenetischen Diagnostik der hereditären Hämochromatose. Med Genet 18:273–278Google Scholar
  19. 19.
    Stuhrmann M, Strassburg C, Schmidtke J (2005) Genotype-based screening for hereditary haemochromatosis. I: technical performance, costs and clinical relevance of a German pilot study. Eur J Hum Genet 13:69–78PubMedCrossRefGoogle Scholar
  20. 20.
    Asberg A, Tretli S, Hveem K, Bjerve KS (2002) Benefit of population-based screening for phenotypic hemochromatosis in young men. Scand J Gastroenterol 37:1212–1219PubMedCrossRefGoogle Scholar
  21. 21.
    Phatak PD, Guzman G, Woll JE et al (1994) Cost-effectiveness of screening for hereditary hemochromatosis. Arch Intern Med 154:769–776PubMedCrossRefGoogle Scholar
  22. 22.
    Olynyk JK, Hagan SE, Cullen DJ et al (2004) Evolution of untreated hereditary hemochromatosis in the Busselton population: a 17-year study. Mayo Clin Proc 79:309–313PubMedCrossRefGoogle Scholar
  23. 23.
    Nisselle AE, Delatycki MB, Collins V et al (2004) Implementation of HaemScreen, a workplace-based genetic screening program for hemochromatosis. Clin Genet 65:358–367PubMedCrossRefGoogle Scholar
  24. 24.
    Hicken BL, Tucker DC, Barton JC (2003) Patient compliance with phlebotomy therapy for iron overload associated with hemochromatosis. Am J Gastroenterol 98:2072–2077PubMedCrossRefGoogle Scholar
  25. 25.
    Haynes RB, McDonald H, Garg AX, Montague P (2002) Interventions for helping patients to follow prescriptions for medications. Cochrane Database Syst Rev:CD000011Google Scholar
  26. 26.
    Philips Z, Claxton K, Palmer S (2008) The half-life of the truth. Appropriate time horizons for research decisions? Med Decis Making 28(3):287–299PubMedCrossRefGoogle Scholar
  27. 27.
    Devlin N, Parkin D (2004) Does NICE have a cost-effectiveness threshold and what other factors influence its decisions? A binary choice analysis. Health Econ 13:437–452PubMedCrossRefGoogle Scholar
  28. 28.
    Gold MR (Hrsg) (1996) Cost-effectiveness in health and medicine. Oxford Univ. Press, New York u.a.Google Scholar
  29. 29.
    Neumann PJ, Sandberg EA, Bell CM et al (2000) Are pharmaceuticals cost-effective? A review of the evidence. Health Aff (Millwood) 19:92–109Google Scholar
  30. 30.
    Braithwaite RS, Meltzer DO, King JT Jr et al (2008) What does the value of modern medicine say about the $50,000 per quality-adjusted life-year decision rule? Med Care 46:349–356PubMedCrossRefGoogle Scholar
  31. 31.
    Grosse SD (2008) Assessing cost-effectiveness in healthcare: history of the $50,000 per QALY threshold. Expert Rev Pharmacoecon Outcomes Res 8:165–178PubMedCrossRefGoogle Scholar
  32. 32.
    Weinstein MC (2008) How much are americans willing to pay for a quality-adjusted life year? Med Care 46:343–345PubMedCrossRefGoogle Scholar
  33. 33.
    Caro JJ, Nord E, Siebert U et al (2010) The efficiency frontier approach to economic evaluation of health-care interventions. Health Econ 19:1117–1127PubMedCrossRefGoogle Scholar
  34. 34.
    Sculpher M, Claxton K (2010) Sins of omission and obfuscation: IQWIG’s guidelines on economic evaluation methods. Health Econ 19:1132–1136PubMedCrossRefGoogle Scholar
  35. 35.
    Shankaran V, McKoy JM, Dandade N et al (2007) Costs and cost-effectiveness of a low-intensity patient-directed intervention to promote colorectal cancer screening. J Clin Oncol 25:5248–5253PubMedCrossRefGoogle Scholar
  36. 36.
    Sequist TD, Franz C, Ayanian JZ (2010) Cost-effectiveness of patient mailings to promote colorectal cancer screening. Med Care 48:553–557PubMedCrossRefGoogle Scholar
  37. 37.
    Chirikos TN, Christman LK, Hunter S, Roetzheim RG (2004) Cost-effectiveness of an intervention to increase cancer screening in primary care settings. Prev Med 39:230–238PubMedCrossRefGoogle Scholar

Copyright information

© Springer Medizin Verlag 2012

Authors and Affiliations

  • W.H. Rogowski
    • 1
    • 2
  • S.D. Grosse
    • 3
  • E. Meyer
    • 1
  • J. John
    • 1
  • S. Palmer
    • 4
  1. 1.Institut für Gesundheitsökonomie und Management im GesundheitswesenHelmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH)NeuherbergDeutschland
  2. 2.Institut und Poliklinik für Arbeits-, Sozial- und UmweltmedizinKlinikum der Ludwig-Maximilians UniversitätMünchenDeutschland
  3. 3.CDC – Centers for Disease Control and PreventionAtlantaUSA
  4. 4.Centre for Health EconomicsUniversity of YorkYorkUK

Personalised recommendations